LIVRAISON GARANTIE avant Noël pour vos achats avec Colissimo jusqu'au 20 décembre inclus sur tous les livres indiqués "Expédiés" sous 24h"
Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory

High-Dimensional Covariance Matrix Estimation: An Introduction to Random Matrix Theory

Aygul Zagidullina

115 pages, parution le 29/10/2021

Résumé

It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way.This book presents covariance matrix estimation and related aspects of random matrix theory. It focuses on the sample covariance matrix estimator and provides a holistic description of its properties under two asymptotic regimes: the traditional one, and the high-dimensional regime that better fits the big data context. It draws attention to the deficiencies of standard statistical tools when used in the high-dimensional setting, and introduces the basic concepts and major results related to spectral statistics and random matrix theory under high-dimensional asymptotics in an understandable and reader-friendly way. The aim of this book is to inspire applied statisticians, econometricians, and machine learning practitioners who analyze high-dimensional data to apply the recent developments in their work.

Foreword.- 1 Introduction.- 2 Traditional Estimators and Standard Asymptotics.- 3 Finite Sample Performance of Traditional Estimators.- 4 Traditional Estimators and High-Dimensional Asymptotics.- 5 Summary and Outlook.- Appendices.

Aygul Zagidullina received her Ph.D. in Quantitative Economics and Finance from the University of Konstanz, Germany, with a specialization in the areas of financial econometrics and statistical modeling. Her research interests include estimation of high-dimensional covariance matrices, machine learning, factor models and neural networks.


Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Aygul Zagidullina
Parution 29/10/2021
Nb. de pages 115
EAN13 9783030800642

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription