Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Holomorphic Curves in Low Dimensions: From Symplectic Ruled Surfaces to Planar Contact Manifolds
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Holomorphic Curves in Low Dimensions: From Symplectic Ruled Surfaces to Planar Contact Manifolds

Holomorphic Curves in Low Dimensions: From Symplectic Ruled Surfaces to Planar Contact Manifolds

Chris Wendl - Collection Yellow Sale 2024

294 pages, parution le 28/06/2018

Résumé

This monograph provides an accessible introduction to the applications of pseudoholomorphic curves in symplectic and contact geometry, with emphasis on dimensions four and three.

The first half of the book focuses on McDuff's characterization of symplectic rational and ruled surfaces, one of the classic early applications of holomorphic curve theory. The proof presented here uses the language of Lefschetz fibrations and pencils, thus it includes some background on these topics, in addition to a survey of the required analytical results on holomorphic curves. Emphasizing applications rather than technical results, the analytical survey mostly refers to other sources for proofs, while aiming to provide precise statements that are widely applicable, plus some informal discussion of the analytical ideas behind them. The second half of the book then extends this program in two complementary directions: (1) a gentle introduction to Gromov-Witten theory and complete proof of the classification of uniruled symplectic 4-manifolds; and (2) a survey of punctured holomorphic curves and their applications to questions from 3-dimensional contact topology, such as classifying the symplectic fillings of planar contact manifolds.

This book will be particularly useful to graduate students and researchers who have basic literacy in symplectic geometry and algebraic topology, and would like to learn how to apply standard techniques from holomorphic curve theory without dwelling more than necessary on the analytical details.

This book is also part of the Virtual Series on Symplectic Geometry

http://www.springer.com/series/16019

1 Introduction.- 2 Background on Closed Pseudoholomorphic Curves.- 3 Blowups and Lefschetz Fibrations.- 4 Compactness.- 5 Exceptional Spheres.- 6 Rational and Ruled Surfaces.- 7 Uniruled Symplectic 4-Manifolds.- 8 Holomorphic Curves in Symplectic Cobordisms.- 9 Contact 3-Manifolds and Symplectic Fillings.- Appendix.- Bibliography.- Index. Chris Wendl is known among symplectic topologists for contributions to the study of symplectic fillability of contact manifolds, and for transversality results in the theory of pseudoholomorphic curves. He is currently Professor of Differential Geometry and Global Analysis at the Humboldt University in Berlin, and is also the author of two other forthcoming books on holomorphic curves and symplectic field theory.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Chris Wendl
Collection Yellow Sale 2024
Parution 28/06/2018
Nb. de pages 294
EAN13 9783319913698

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription