Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares

Stephen / Vandenberghe Boyd

474 pages, parution le 06/06/2018

Résumé

A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.This groundbreaking textbook combines straightforward explanations with a wealth of practical examples to offer an innovative approach to teaching linear algebra. Requiring no prior knowledge of the subject, it covers the aspects of linear algebra - vectors, matrices, and least squares - that are needed for engineering applications, discussing examples across data science, machine learning and artificial intelligence, signal and image processing, tomography, navigation, control, and finance. The numerous practical exercises throughout allow students to test their understanding and translate their knowledge into solving real-world problems, with lecture slides, additional computational exercises in Julia and MATLAB, and data sets accompanying the book online. It is suitable for both one-semester and one-quarter courses, as well as self-study, this self-contained text provides beginning students with the foundation they need to progress to more advanced study.Part I. Vectors: 1. Vectors; 2. Linear functions; 3. Norm and distance; 4. Clustering; 5. Linear independence; Part II. Matrices: 6. Matrices; 7. Matrix examples; 8. Linear equations; 9. Linear dynamical systems; 10. Matrix multiplication; 11. Matrix inverses; Part III. Least Squares: 12. Least squares; 13. Least squares data fitting; 14. Least squares classification; 15. Multi-objective least squares; 16. Constrained least squares; 17. Constrained least squares applications; 18. Nonlinear least squares; 19. Constrained nonlinear least squares; Appendix A; Appendix B; Appendix C; Appendix D; Index.Stephen Boyd is the Samsung Professor of Engineering, and Professor of Electrical Engineering at Stanford University,California, with courtesy appointments in the Department of Computer Science, and the Department of Management Science and Engineering. He is the co-author of Convex Optimization (Cambridge, 2004), written with Lieven Vandenberghe. Lieven Vandenberghe is a Professor in the Electrical and Computer Engineering Department at the University of California, Los Angeles, with a joint appointment in the Department of Mathematics. He is the co-author, with Stephen Boyd, of Convex Optimization (Cambridge, 2004).

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Stephen / Vandenberghe Boyd
Parution 06/06/2018
Nb. de pages 474
EAN13 9781316518960

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription