Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Kernel Methods in Computational Biology
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Kernel Methods in Computational Biology

Kernel Methods in Computational Biology

Bernhard Scholkopf, Koji Tsuda, Jean-Philippe Vert

400 pages, parution le 04/10/2004

Résumé

Modern machine learning techniques are proving to be extremely valuable for the analysis of data in computational biology problems. One branch of machine learning, kernel methods, lends itself particularly well to the difficult aspects of biological data, which include high dimensionality (as in microarray measurements), representation as discrete and structured data (as in DNA or amino acid sequences), and the need to combine heterogeneous sources of information. This book provides a detailed overview of current research in kernel methods and their applications to computational biology.

Following three introductory chapters -- an introduction to molecular and computational biology, a short review of kernel methods that focuses on intuitive concepts rather than technical details, and a detailed survey of recent applications of kernel methods in computational biology -- the book is divided into three sections that reflect three general trends in current research. The first part presents different ideas for the design of kernel functions specifically adapted to various biological data; the second part covers different approaches to learning from heterogeneous data; and the third part offers examples of successful applications of support vector machine methods.

L'auteur - Koji Tsuda

Koji Tsuda is a Research Scientist at the Max Planck Institute and a Researcher at AIST Computational Biology Research Center, Tokyo.

L'auteur - Jean-Philippe Vert

Jean-Philippe Vert is Researcher and Leader of the Bioinformatics Group at École des Mines de Paris.

Sommaire

  • Introduction
    • A Primer on Molecular Biology
    • A Primer on Kernel Methods
    • Support Vector Machine Applications in Computational Biology
  • Kernels for biological data
    • Inexact Matching String Kernels for Protein Classification
    • Fast Kernels for String and Tree Matching
    • Local Alignment Kernels for Biological Sequences
    • Kernels for Graphs
    • Diffusion Kernels
    • A Kernel for Protein Secondary Structure Prediction
  • Data fusion with kernel methods
    • Heterogeneous Data Comparison and Gene Selection with Kernel Canonical Correlation Analysis
    • Kernel-Based Integration of Genomic Data Using Semidefinite Programming
    • Protein Classification via Kernel Matrix Completion
  • Advanced application of support vector machines
    • Accurate Splice Site Detection for Caenorhabditis elegans
    • Gene Expression Analysis: Joint Feature Selection and Classifier Design
    • Gene Selection for Microarray Data
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) The MIT Press
Auteur(s) Bernhard Scholkopf, Koji Tsuda, Jean-Philippe Vert
Parution 04/10/2004
Nb. de pages 400
Format 20,5 x 26
Couverture Broché
Poids 1051g
Intérieur Noir et Blanc
EAN13 9780262195096
ISBN13 978-0-262-19509-6

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription