Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Lectures on Convex Optimization
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Lectures on Convex Optimization

Lectures on Convex Optimization

Yurii Nesterov - Collection Yellow Sale 2023

586 pages, parution le 22/09/2018

Résumé

The first elementary exposition of core ideas of complexity theory for convex optimization, this book explores optimal methods and lower complexity bounds for smooth and non-smooth convex optimization. Also covers polynomial-time interior-point methods.This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning.

Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail.

Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author's lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Introduction.- Part I Black-Box Optimization.- 1 Nonlinear Optimization.- 2 Smooth Convex Optimization.- 3 Nonsmooth Convex Optimization.- 4 Second-Order Methods.- Part II Structural Optimization.- 5 Polynomial-time Interior-Point Methods.- 6 Primal-Dual Model of Objective Function.- 7 Optimization in Relative Scale.- Bibliographical Comments.- Appendix A. Solving some Auxiliary Optimization Problems.- References.- Index. Yurii Nesterov is a well-known specialist in optimization. He is an author of pioneering works related to fast gradient methods, polynomial-time interior-point methods, smoothing technique, regularized Newton methods, and others. He is a winner of several prestigious international prizes, including George Danzig prize (2000), von Neumann Theory prize (2009), SIAM Outstanding Paper Award (20014), and Euro Gold Medal (2016).

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Yurii Nesterov
Collection Yellow Sale 2023
Parution 22/09/2018
Nb. de pages 586
EAN13 9783319915777

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription