Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Linear Response Theory
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Linear Response Theory

Linear Response Theory

Giuseppe de nittis (author)|max lein (author)

137 pages, parution le 27/07/2017

Résumé

Giuseppe De Nittis is Assistant Professor of the Facultad de Matemáticas at the Pontificia Universidad Católica de Chile in Santiago. He got his PhD in 2010 at SISSA (Trieste, Italy) working on the geometric interpretation of the Quantum Hall Effect and its relation with the Kubo formula. In the last years he worked constantly at the boundary between topology, algebra and analysis to face problems coming from the condensed matter area, with a special focus on the theory of topological insulators. More information can be found on his web page (gdenittis.wordpress.com).

Max Lein is Assistant Professor at the Advanced Institute of Materials Research, which is associated to Tohoku University in Sendai Japan. He completed his PhD in 2011 at the Technische Universität München under the supervision of Prof. H. Spohn. He has worked for over 10 years on the rigorous analysis of problems from condensed matter physics, in particular topological effects, using tools from analysis and algebra. More recently, he broadened his field of interest to periodic light conductors. In his analyses, he has applied and developed pseudodifferential and semiclassical methods, and combined algebraic and analytic techniques (e. g. to analyze essential spectra of magnetic pseudodifferential operators). More information can be found on his homepage (maxlein.com).
Introduction.- Setting, Hypotheses and Main Results.- Mathematical Framework.- A Unified Framework for Common Physical Systems.- Studying the Dynamics.- The Kubo Formula and its Adiabatic Limit.- Applications.This book presents a modern and systematic approach to Linear Response Theory (LRT) by combining analytic and algebraic ideas. LRT is a tool to study systems that are driven out of equilibrium by external perturbations. In particular the reader is provided with a new and robust tool to implement LRT for a wide array of systems. The proposed formalism in fact applies to periodic and random systems in the discrete and the continuum. After a short introduction describing the structure of the book, its aim and motivation, the basic elements of the theory are presented in chapter 2. The mathematical framework of the theory is outlined in chapters 3-5: the relevant von Neumann algebras, noncommutative $L^p$- and Sobolev spaces are introduced; their construction is then made explicit for common physical systems; the notion of isopectral perturbations and the associated dynamics are studied. Chapter 6 is dedicated to the main results, proofs of the Kubo and Kubo-Streda formulas. The book closes with a chapter about possible future developments and applications of the theory to periodic light conductors.
The book addresses a wide audience of mathematical physicists, focusing on the conceptual aspects rather than technical details and making algebraic methods accessible to analysts.

1st Edition 2017th editionQA184.2Algebras, Linear.1SwitzerlandCham9783319567327|9783319567334Giuseppe De Nittis, Max Lein.SpringerBriefs in Mathematical Physics21

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Giuseppe de nittis (author)|max lein (author)
Parution 27/07/2017
Nb. de pages 137
Format 155 x 235
Poids 237g
EAN13 9783319567310

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription