Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Liouville-Riemann-Roch Theorems on Abelian Coverings
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Liouville-Riemann-Roch Theorems on Abelian Coverings

Liouville-Riemann-Roch Theorems on Abelian Coverings

Minh / Kuchment Kha

96 pages, parution le 12/02/2021

Résumé

This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity.This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann-Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz'ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity.
A natural question is whether one can combine the Riemann-Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial.
The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics.

Preliminaries.- The Main Results.- Proofs of the Main Results.- Specific Examples of Liouville-Riemann-Roch Theorems.- Auxiliary Statements and Proofs of Technical Lemmas.- Final Remarks and Conclusions.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Minh / Kuchment Kha
Parution 12/02/2021
Nb. de pages 96
EAN13 9783030674274

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription