
Mathematical and statistical methods for genetic analysis
Résumé
During the past decade, geneticists have cloned scores of Mendelian disease genes and constructed a rough draft of the entire human genome. The unprecedented insights into human disease and evolution offered by mapping, cloning, and sequencing will transform medicine and agriculture. This revolution depends vitally on the contributions of applied mathematicians, statisticians, and computer scientists.
Mathematical and Statistical Methods for Genetic Analysis is written to equip students in the mathematical sciences to understand and model the epidemiological and experimental data encountered in genetics research. Mathematical, statistical, and computational principles relevant to this task are developed hand in hand with applications to population genetics, gene mapping, risk prediction, testing of epidemiological hypotheses, molecular evolution, and DNA sequence analysis. Many specialized topics are covered that are currently accessible only in journal articles.
This second edition expands the original edition by over 100 pages and includes new material on DNA sequence analysis, diffusion processes, binding domain identification, Bayesian estimation of haplotype frequencies, case-control association studies, the gamete competition model, QTL mapping and factor analysis, the Lander-Green-Kruglyak algorithm of pedigree analysis, and codon and rate variation models in molecular phylogeny. Sprinkled throughout the chapters are many new problems.
Kenneth Lange is Professor of Biomathematics and Human Genetics at the UCLA School of Medicine. At various times during his career, he has held appointments at the University of New Hampshire, MIT, Harvard, and the University of Michigan. While at the University of Michigan, he was the Pharmacia & Upjohn Foundation Professor of Biostatistics. His research interests include human genetics, population modeling, biomedical imaging, computational statistics, and applied stochastic processes. Springer-Verlag published his book Numerical Analysis for Statisticians in 1999.
Contents
- Basic Principles of Population Genetics
- Counting Methods and the EM Algorithm
- Newton's Method and Scoring
- Hypothesis Testing and Categorical Data
- Genetic Identity Coefficients
- Applications of Identity Coefficients
- Computation of Mendelian Likelihoods
- The Polygenic Model
- Descent Graph Models
- Molecular Phylogeny
- Radiation Hybrid Mapping
- Models of Recombination
- Sequence Analysis
- Poisson Approximation
- Diffusion Processes
- Appendices
- Index
L'auteur - Kenneth Lange
UCLA School of Medicine, Los Angeles, CA, USA
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Kenneth Lange |
Parution | 13/11/2003 |
Nb. de pages | 384 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 675g |
Intérieur | Noir et Blanc |
EAN13 | 9780387953892 |
ISBN13 | 978-0-387-95389-2 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Sciences Sciences de la vie