Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators

Nicolas Lerner

397 pages, parution le 13/01/2010

Résumé

This book contains a thorough exposition of pseudodifferential calculus defined by metrics on the phase space. It contains a proof of the Nirenberg-Treves conjecture and a construction of counterexamples to "optimal" solvability under condition (psi).

This book is devoted to the study of pseudo-di?erential operators, with special emphasis on non-selfadjoint operators, a priori estimates and localization in the phase space. We have tried here to expose the most recent developments of the theory with its applications to local solvability and semi-classical estimates for non-selfadjoint operators. The?rstchapter,Basic Notions of Phase Space Analysis,isintroductoryand gives a presentation of very classical classes of pseudo-di?erential operators, along with some basic properties. As an illustration of the power of these methods, we give a proof of propagation of singularities for real-principal type operators (using aprioriestimates,andnotFourierintegraloperators),andweintroducethereader to local solvability problems. That chapter should be useful for a reader, say at the graduate level in analysis, eager to learn some basics on pseudo-di?erential operators. The second chapter, Metrics on the Phase Space begins with a review of symplectic algebra, Wigner functions, quantization formulas, metaplectic group and is intended to set the basic study of the phase space. We move forward to the more general setting of metrics on the phase space, following essentially the basic assumptions of L. H ormander (Chapter 18 in the book [73]) on this topic.Preface.- 1 Basic Notions of Phase Space Analysis.- 1.1 Introduction to pseudodifferential operators.- 1.2 Pseudodifferential operators on an open subset of Rn.- 1.3 Pseudodifferential operators in harmonic .- 2 Metrics on the Phase Space.- 2.1 The structure of the phase space.- 2.2 Admissible metrics.- 2.3 General principles of pseudodifferential calculus.- 2.4 The Wick calculus of pseudodifferential operators.- 2.5 Basic estimates for pseudodifferential operators.- 2.6 Sobolev spaces attached to a pseudodifferential calculus.- 3 Estimates for Non-selfadjoint Operators.- 3.1 Introduction.- 3.2 First bracket analysis.- 3.3 The geometry of condition (Y).- 3.4 The necessity of condition (Y).- 3.5 Estimates with loss of k/k + 1 derivative.- 3.6 Estimates with loss of one derivative.- 3.7 (Y) does not imply solvability with loss of one derivative.- 3.8 (Y) implies solvability with loss of 3/2 derivatives.- 3.9 Open problems.- 4 Appendix.- 4.1 Some elements of Fourier analysis.- 4.2 Some remarks of algebra.- 4.3 Lemmas of classical analysis.- 4.4 On the symplectic and metaplectic groups.- 4.5 Composing a large number of symbols.- 4.6 A few elements of operator theory.- 4.7 On Sjoestrand algebra.- 4.8 On preparation theorems.- 4.9 On the pseudospectrum.- 4.10 More on symbolic calculus.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Nicolas Lerner
Parution 13/01/2010
Nb. de pages 397
EAN13 9783764385095

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription