Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Multivariate Bayesian Statistics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Multivariate Bayesian Statistics

Multivariate Bayesian Statistics

Daniel B. Rowe

350 pages, parution le 24/12/2002

Résumé

  • Offers the first Bayesian approach to the source separation problem
  • Provides all of the mathematical and statistical background needed, from statistical distributions and introductory Bayesian probability to prior hyperparameter assessment and estimation methods
  • Covers the multivariate regression model, the factor analysis model, the Bayesian Source Separation model, the unobservable and observable source separation model, the delayed source separation model, the dynamic mixing coefficient models, and the correlation model, all discussed from the Bayesian perspective

Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but also allow inferences to be drawn from them.

Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing offers a thorough, self-contained treatment of the source separation problem. After an introduction to the problem using the "cocktail-party" analogy, Part I provides the statistical background needed for the Bayesian source separation model. Part II considers the instantaneous constant mixing models, where the observed vectors and unobserved sources are independent over time but allowed to be dependent within each vector. Part III details more general models in which sources can be delayed, mixing coefficients can change over time, and observation and source vectors can be correlated over time. For each model discussed, the author gives two distinct ways to estimate the parameters.

Real-world source separation problems, encountered in disciplines from engineering and computer science to economics and image processing, are more difficult than they appear. This book furnishes the fundamental statistical material and up-to-date research results that enable readers to understand and apply Bayesian methods to help solve the many "cocktail party" problems they may confront in practice.

Contents

Part l: Fundamentals
  • Statistical Distributions
  • Introductory Bayesian Statistics
  • Prior Distributions
  • Hyperparameter Assessment
  • Bayesian Estimation Methods
  • Regression
Part II: II Models
  • Bayesian regression
  • Bayesian Factor Analysis
  • Bayesian Source Separation
  • Unobservable And Observable Source Separation
  • FMRI Case Study
  • Introduction
  • Model
  • Priors and Posterior
  • Estimation and Inference
  • Simulated FMRI Experiment
  • Real FMRI Experiment
  • FMRI Conclusion
Part III: Generalizations
  • Delayed Sources And Dynamic Coefficients
  • Correlated Observation And Source Vectors
  • Conclusion
Appendix A FMRI Activation Determination
Appendix B FMRI Hyperparameter Assessment

L'auteur - Daniel B. Rowe

Medical College of Wisconsin, Wisconsin, USA

Caractéristiques techniques

  PAPIER
Éditeur(s) Chapman and Hall / CRC
Auteur(s) Daniel B. Rowe
Parution 24/12/2002
Nb. de pages 350
Format 16 x 24
Couverture Relié
Poids 661g
Intérieur Noir et Blanc
EAN13 9781584883180
ISBN13 978-1-58488-318-0

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription