
Résumé
- Offers the first Bayesian approach to the source separation problem
- Provides all of the mathematical and statistical background needed, from statistical distributions and introductory Bayesian probability to prior hyperparameter assessment and estimation methods
- Covers the multivariate regression model, the factor analysis model, the Bayesian Source Separation model, the unobservable and observable source separation model, the delayed source separation model, the dynamic mixing coefficient models, and the correlation model, all discussed from the Bayesian perspective
Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but also allow inferences to be drawn from them.
Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing offers a thorough, self-contained treatment of the source separation problem. After an introduction to the problem using the "cocktail-party" analogy, Part I provides the statistical background needed for the Bayesian source separation model. Part II considers the instantaneous constant mixing models, where the observed vectors and unobserved sources are independent over time but allowed to be dependent within each vector. Part III details more general models in which sources can be delayed, mixing coefficients can change over time, and observation and source vectors can be correlated over time. For each model discussed, the author gives two distinct ways to estimate the parameters.
Real-world source separation problems, encountered in disciplines from engineering and computer science to economics and image processing, are more difficult than they appear. This book furnishes the fundamental statistical material and up-to-date research results that enable readers to understand and apply Bayesian methods to help solve the many "cocktail party" problems they may confront in practice.
Contents
Part l: Fundamentals- Statistical Distributions
- Introductory Bayesian Statistics
- Prior Distributions
- Hyperparameter Assessment
- Bayesian Estimation Methods
- Regression
- Bayesian regression
- Bayesian Factor Analysis
- Bayesian Source Separation
- Unobservable And Observable Source Separation
- FMRI Case Study
- Introduction
- Model
- Priors and Posterior
- Estimation and Inference
- Simulated FMRI Experiment
- Real FMRI Experiment
- FMRI Conclusion
- Delayed Sources And Dynamic Coefficients
- Correlated Observation And Source Vectors
- Conclusion
Appendix B FMRI Hyperparameter Assessment
L'auteur - Daniel B. Rowe
Medical College of Wisconsin, Wisconsin, USA
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | Daniel B. Rowe |
Parution | 24/12/2002 |
Nb. de pages | 350 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 661g |
Intérieur | Noir et Blanc |
EAN13 | 9781584883180 |
ISBN13 | 978-1-58488-318-0 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse