Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Multivariate Polysplines
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Multivariate Polysplines

Multivariate Polysplines

Ognyan Kounchev

498 pages, parution le 01/06/2001

Résumé

Multivariate Polysplines presents a completely original approach to multivariate spline analysis. Polysplines are piecewise polyharmonic splines and provide a powerful means of interpolating data. Examples in the text indicate that in many practical cases of data smoothing Polysplines are more effective than well-established techniques, such as Kriging, Radial Basis Functions and Minimum Curvature. They also provide new perspectives on wavelet theory with applications to signal and image processing.

Key Features

· Part 1 assumes no special knowledge of partial differential equations and is intended as a graduate level introduction to the topic
· Part 2 develops the theory of cardinal Polysplines, which is a natural generalization of Schoenberg's beautiful one-dimensional theory of cardinal splines
· Part 3 constructs a wavelet analysis using cardinal Polysplines. The results parallel those found by Chui for the one-dimensional case
· Part 4 considers the ultimate generalization of Polysplines - on manifolds, for a wide class of higher-order elliptic operators and satisfying a Holladay variational property.

Multivariate Polysplines is aimed principally at specialists in approximation and spline theory, wavelet analysis and signal and image processing. It will also prove a valuable text for people using computer aided geometric design (CAGD and CAD/CAM) systems or smoothing and spline methods in geophysics, geodesy, geology, magnetism etc. as it offers a flexible alternative to traditional tools such as Kriging, Radial Basis Functions and Minimum Curvature.

The book is also suitable as a text for graduate courses on these topics.

Contents

Preface

  • Introduction
Introduction tp polysplines
  • One-dimensional linera and cubic splines
  • The twxo-dimensional case: data and smoothness concepts
  • The objects concepts: harmonic and polyharmonic functions in rectangular domains in R²
  • Polysplines on strips in R²
  • Application of polysplines to magnetism and CAGD
  • The object concpet: harmonic and polyharmonic functions in annuli in R²
  • Polysplines on annuli R²
  • Polysplines on strips and annuli in R²
  • Compendium on spherical harmonics and polyharmonic functions
  • Appendix on Chebyshev splines
  • Appendix on Fourier series and Fourier transfomr
  • Bibliography to part I
Cardinal polysplines in R²
  • Cardinal L-splines according to Micchelli
  • Risz bound for the cardinal L-splines Qz+1
  • Cardinal interpolation polysplines on annuli
  • Bibliography to part II
Wavelet analysis
  • Chui's cardinal spline wavelet analysis
  • Cardinal L-spline wavelet analysis
  • Polyharmonic wavelet analysis: scalling and rotationally invariant spaces
  • Bibliography to part III
Polysplines for general intefaces
  • Heuristic arguments
  • Definition of polysplines and uniqueness for general interfaces
  • A priori estimates and Fredholm operators
  • Existence and convergence of polysplines
  • Appendix on elliptic boundary value problems in Sobolev and Hölder spaces
  • Afterwords
  • Bibliography to part IV
  • Index

L'auteur - Ognyan Kounchev

Ognyan Kounchev received his M.S. in partial differential equations from Sofia University, Bulgaria and his Ph.D. in optimal control of partial differential equations and numerical methods from the University of Belarus, Minsk. He was awarded a grant from the Volkswagen Foundation (1996-1999) for studying the applications of partial differential equations in approximation and spline theory. Currently, Dr Kounchev is a Fulbright Scholar at the University of Wisconsin-Madison where he works in the Wavelet Ideal Data Representation Center in the Department of Computer Sciences.

Caractéristiques techniques

  PAPIER
Éditeur(s) Apress
Auteur(s) Ognyan Kounchev
Parution 01/06/2001
Nb. de pages 498
Format 17,2 x 25
Couverture Relié
Poids 1169g
Intérieur Noir et Blanc
EAN13 9780124224902

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription