
Neural Networks and Intellect
Using Model Based Concepts
Résumé
Contents
- Part I. Overview. 2300 years of philosophy; 100 years of mathematical logic and 50 years of computational intelligence
- 1 Introduction. Concepts of Intelligence
- 1.1 Concepts of Intelligence in Mathematics, Psychology, and Philosophy
- 1.2 Probability, Hypothesis Choice, Pattern Recognition, and Complexity
- 1.3 Prediction, Tracking, and Dynamical Models
- 1.4 Preview: Intelligence, Internal Model, Symbol, Emotions and Consciousness
- Notes
- Bibliographical Notes
- Problems
- 2 Mathematical Concepts of Mind
- 2.1 Complexity, Aristotle, and Fuzzy Logic
- 2.2 Nearest Neighbors and Degenerate Geometries
- 2.3 Gradient Learning, Back Propagation and Feedforward Neural Networks
- 2.4 Rule-Based Artificial Intelligence
- 2.5 Concept of Internal Model
- 2.6 Abductive Reasoning
- 2.7 Statistical Learning Theory and Support Vector Machines
- 2.8 AI Debates Past and Future
- 2.9 Societ of Mind
- 2.10 Sensor Fusion and JDL Model
- 2.11 Hierarchical Organization
- 2.12 Semiotics
- 2.13 Evolutionary Computation, Genetic Algorithms, and CAS
- 2.14 Neural Field Theories
- 2.15 Intelligence, Learning, and Computability
- Problems
- Bibliographical Notes
- Notes
- 3 Mathematical vs. Metaphysical Concepts of Mind
- 3.1 Prolegomenon. Plato, Antisthenes, and Artifical Intelligence
- 3.2 Learning from Aristotle to Maimonides
- 3.3 Heresy of Occam and Scientific Method
- 3.4 Mathematics vs. Physics
- 3.5 Kant: Pure Spirit and Psychology
- 3.6 Freud vs. Jung. Psychology of Philosophy
- 3.7 Wither We Go From Here?
- Notes
- Bibliographical Notes
- Part II. Modeling Field Theory. New mathmatical theory of intelligence with examples of engineering applications
- 4 Modeling Field Theory and Model-Based Neural Networks
- 4.1 Internal Models, Uncertainties, and Similarities
- 4.2 Modeling Field Theory Dynamics
- 4.3 Bayesian MFT
- 4.4 Shannon-Einsteinian MFT
- 4.5 Modeling Field Theory Neural Architecture
- 4.6 Convergence
- 4.7 Learning of Structures and AIC
- 4.8 Instinct of World Modeling: Knowledge Instinct
- 4.9 Summary
- 5 Maximum Likelihood Adaptive Neural System (MLANS) for Grouping and Recognition
- 5.1 Grouping, Recognition and Models
- 5.2 Gaussian Mixture Model. Unsupervised Learning
- 5.3 Combined Unsupervised and Interactive Learning
- 5.4 Structure Estimation
- 5.5 Wishart and Rician Mixture Models for Radar Image Classification
- 5.6 Convergence
- 5.7 MLANS, Physics, Biology, and Other Neural Networks
- Notes
- Bibliographical Notes
- Problems
- 6 Einsteinian Neural Network (ENN) for Signal and Image Processing
- 6.1 Images, Signals, and Spectra
- 6.2 Spectral Models
- 6.3 Neural Dynamics of ENN
- 6.4 Applications to Acoustic Transient Signals and Speech Recognition
- 6.5 Applications to Electromagnetic Wave Propagation in Ionosphere
- 6.6 Summary
- Appendix
- Notes
- Bibliograhical Notes
- Problems
- 7 Prediction, Association, Tracking, and Information Fusion
- 7.1 Prediction, Association, and Non-linear Regression
- 7.2 Association and Tracking Using Bayesian MFT
- 7.3 Association and Tracking Using Shannon-Einsteinian MFT (SE-CAT)
- 7.4 Sensor Fusion MFT
- 7.5 Attention
- Notes
- Bibliographical Notes
- Problems
- 8 Quantum Modeling Field Theory (QMFT)
- 8.1 Quantum Computing and Quantum Physics Notations
- 8.2 Gibbs Quantum Modeling Field System
- 8.3 Hamiltonian Quantum Modeling Field System
- Bibliographical Notes
- Problems
- 9 Fundamental Limitations on Learning
- 9.1 The Cramer-Rao Bound (CRB) on Speed of Learning
- 9.2 Overlap Between Classes
- 9.3 CRB for MLANS
- 9.4 CRB for Concurrent Association and Tracking (CAT)
- 9.5 Summary. Bounds for Intellect and Evolution?
- Appendix. CRB Rule-of-Thumb for CAT
- Notes
- Bibliographical Notes
- Problems
- 10 Intelligent Systems Organization, Kant vs. MFT
- 10.1 Kant, MFT and Intelligent Systems
- 10.2 Emotional Machines (Toward Mathematics of Beauty)
- 10.3 Learning: Genetic Algorithms, MFT and Semiosis
- Notes
- Bibliographical Notes
- Problems
- Part III. Futuristic Directions. Fun Stuff. Mind: Physics+Mind+Conjectures
- 11 Goodel's Theorem and Fundamental Limitations of Computation and Learning
- 11.1 Penrose and Computability of Mathematical Understanding
- 11.2 Logic and Mind
- 11.3 Godel, Turing, Penrose, and Putnam
- 11.4 Godel Theorem vs. Physics of Mind
- Notes
- Biliographical Notes
- 12 Toward Physics of Consciousness
- 12.1 Phenomenology of Consciousness
- 12.2 Physics of Spiritual Substance. Future Directions
- 12.3 Epilogue
- Notes
- Bibliographical Notes
- Symbols and Notations
- Definitions and Index
- Bibliography
L'auteur - Leonid Perlovsky
Chief Scientist, Nicholas Research Corporation
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Oxford University Press |
Auteur(s) | Leonid Perlovsky |
Parution | 01/05/2001 |
Nb. de pages | 469 |
Format | 19,5 x 24,3 |
Couverture | Relié |
Poids | 1042g |
Intérieur | Noir et Blanc |
EAN13 | 9780195111620 |
ISBN13 | 978-0-19-511162-0 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse