
Painleve III: A Case Study in the Geometry of Meromorphic Connections
Martin / Hertling Guest
Résumé
The purpose of this monograph is two-fold: it introduces a conceptual language for the geometrical objects underlying Painleve equations, and it offers new results on a particular Painleve III equation of type PIII (D6), called PIII (0, 0, 4, 4), describing its relation to isomonodromic families of vector bundles on P1 with meromorphic connections. This equation is equivalent to the radial sine (or sinh) Gordon equation and, as such, it appears widely in geometry and physics. It is used here as a very concrete and classical illustration of the modern theory of vector bundles with meromorphic connections.
Complex multi-valued solutions on C* are the natural context for most of the monograph, but in the last four chapters real solutions on R> 0 (with or without singularities) are addressed. These provide examples of variations of TERP structures, which are related to tt geometry and harmonic bundles.
As an application, a new global picture o0 is given.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Martin / Hertling Guest |
Parution | 14/10/2017 |
Nb. de pages | 204 |
EAN13 | 9783319665252 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse