
Partial Differential Equations of Classical Structural Members: A Consistent Approach
Andreas Ochsner
Résumé
The derivation and understanding of Partial Differential Equations relies heavily on the fundamental knowledge of the first years of scientific education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills.
The derivation and understanding of Partial Differential Equations relies heavily on the fundamental knowledge of the first years of scientific education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills. Thus, it is a challenging topic for prospective engineers and scientists.
This volume provides a compact overview on the classical Partial Differential Equations of structural members in mechanics. It offers a formal way to uniformly describe these equations. All derivations follow a common approach: the three fundamental equations of continuum mechanics, i.e., the kinematics equation, the constitutive equation, and the equilibrium equation, are combined to construct the partial differential equations.
Introduction to structural modeling.- Rods or bars.- Euler-Bernoulli beams.- Timoshenko beams.- Plane members.- Classical plates.- Shear deformable plates.- Three-dimensional solids.- Introduction to transient problems: Rods or bars.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Andreas Ochsner |
Parution | 14/11/2019 |
Nb. de pages | 92 |
EAN13 | 9783030353100 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse