
Pattern Recognition
Sergios Theodoridis, Konstantinos Koutroumbas
Résumé
Pattern recognition is incredibly important in all automation, information handling and retrieval applications. The new edition of Pattern Recognition, a text written by two of the field's leading experts, covers the entire spectrum of pattern recognition applications from an engineering perspective, examining topics from image analysis to speech recognition and communications. This thoroughly updated edition presents cutting-edge material on neural networks and highlights the latest developments in this growing field, including independent components and support vector machines. Developed through more than 10 years of teaching experience, Pattern Recognition is the most comprehensive reference available for both engineering students and practicing engineers.
Coverage Includes:
- Latest techniques in feature generation, including features based onWavelets, Wavelet Packets, Fractals and a new section on Independent Component Analysis (ICA)
- All new sections on Support Vector Machines, Deformable Template Matching and a related appendix on Constrained Optimization
- Feature selection techniques
- Design of linear and non-linear classifiers, including Bayesian, Multilayer Perceptrons, Decision Trees and RBF networks
- Context-dependent classification, including Dynamic Programming and Hidden Markov Modeling techniques
- Classical approaches, as well as the most recent developments in clustering algorithms, such as fuzzy, possibilistic, morphological, genetic, and annealing techniques
- Coverage of numerous, diverse applications, including Image Analysis, Character Recognition, Medical Diagnosis, Speech Recognition, and Channel Equalization
- Numerous computer simulation examples, supporting the methods given in the book, available via the Web
Contents
- Introduction
- Classifiers Based on Bayes Decision Theory
- Support Vector machines (linear case)
- Support Vector Machines (nonlinear case)
- Decision trees
- Linear Classifiers
- Non Linear Classifiers
- Deformable Template Matching
- Feature Selection
- Feature Generation I: Linear Transforms
- Feature Generation II. Template Matching
- Context Dependent Classification
- System Evaluation Clustering: Basic Concepts
- Clustering Algorithms I: Sequential Algorithms
- Clustering Algorithms II: Hierarchical Algorithms
- Clustering Algorithms III: Schemes Based on Function Optimization
- Clustering Algorithms IV. Cluster Validity
- Appendices
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Academic Press |
Auteur(s) | Sergios Theodoridis, Konstantinos Koutroumbas |
Parution | 16/06/2003 |
Édition | 2eme édition |
Nb. de pages | 690 |
Format | 16 x 23,5 |
Couverture | Broché |
Poids | 1050g |
Intérieur | Noir et Blanc |
EAN13 | 9780126858754 |
ISBN13 | 978-0-12-685875-4 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse