Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Permutation Groups and Cartesian Decompositions Graphes
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Permutation Groups and Cartesian Decompositions Graphes

Permutation Groups and Cartesian Decompositions Graphes

Cheryl e. praeger (author)|csaba schneider (author)

334 pages, parution le 30/05/2018

Résumé

Cheryl E. Praeger is Emeritus Professor at the Centre for the Mathematics of Symmetry and Computation at the University of Western Australia, Perth. She is an Honorary Life Member of the Australian Mathematical Society, and was its first female President. She has authored more than 400 research publications, including five books. Besides holding honorary doctorates awarded by universities in Thailand, Iran, Belgium, Scotland, and Australia, she is also a member of the Order of Australia for her service to mathematics in Australia.1. Introduction; Part I. Permutation Groups - Fundamentals: 2. Group actions and permutation groups; 3. Minimal normal subgroups of transitive permutation groups; 4. Finite direct products of groups; 5. Wreath products; 6. Twisted wreath products; 7. O'Nan-Scott theory and the maximal subgroups of finite alternating and symmetric groups; Part II. Innately Transitive Groups - Factorisations and Cartesian Decompositions: 8. Cartesian factorisations; 9. Transitive cartesian decompositions for innately transitive groups; 10. Intransitive cartesian decompositions; Part III. Cartesian Decompositions - Applications: 11. Applications in permutation group theory; 12. Applications to graph theory; Appendix. Factorisations of simple and characteristically simple groups; Glossary; References; Index.Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan-Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful.IllustrationsQA175Permutation groups.1EnglandCambridgeCheryl E. Praeger, Csaba Schneider.London Mathematical Society Lecture Note Series449

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Cheryl e. praeger (author)|csaba schneider (author)
Parution 30/05/2018
Nb. de pages 334
Format 152 x 228
Poids 500g
EAN13 9780521675062

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription