Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Probability and Statistical Inference
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Probability and Statistical Inference

Probability and Statistical Inference

Robert / Niewiadomska-Bugaj Bartoszynski

592 pages, parution le 01/03/2021

Résumé

Updated classic statistics text, with new problems and examples Probability and Statistical Inference, Third Edition helps students grasp essential concepts of statistics and its probabilistic foundations. This book focuses on the development of intuition and understanding in the subject through a wealth of examples illustrating concepts, theorems, and methods. The reader will recognize and fully understand the why and not just the how behind the introduced material. In this Third Edition, the reader will find a new chapter on Bayesian statistics, 70 new problems and an appendix with the supporting R code. This book is suitable for upper-level undergraduates or first-year graduate students studying statistics or related disciplines, such as mathematics or engineering. This Third Edition: Introduces an all-new chapter on Bayesian statistics and offers thorough explanations of advanced statistics and probability topics Includes 650 problems and over 400 examples - an excellent resource for the mathematical statistics class sequence in the increasingly popular "flipped classroom" format Offers students in statistics, mathematics, engineering and related fields a user-friendly resource Provides practicing professionals valuable insight into statistical tools Probability and Statistical Inference offers a unique approach to problems that allows the reader to fully integrate the knowledge gained from the text, thus, enhancing a more complete and honest understanding of the topic.Preface vii Preface vi 1 Experiments, Sample Spaces, and Events 1 1.1 Introduction 1 1.2 Sample Space 2 1.3 Algebra of Events 9 1.4 Infinite Operations on Events 15 2 Probability 25 2.1 Introduction 25 2.2 Probability as a Frequency 25 2.3 Axioms of Probability 26 2.4 Consequences of the Axioms 31 2.5 Classical Probability 35 2.6 Necessity of the Axioms* 36 2.7 Subjective Probability* 41 3 Counting 45 3.1 Introduction 45 3.2 Product Sets, Orderings, and Permutations 45 3.3 Binomial Coefficients 51 3.4 Multinomial Coefficients 64 4 Conditional Probability, Independence, and Markov Chains 67 4.1 Introduction 67 4.2 Conditional Probability 68 4.3 Partitions; Total Probability Formula 74 4.4 Bayes' Formula 79 4.5 Independence 84 4.6 Exchangeability; Conditional Independence 90 4.7 Markov Chains* 93 5 Random Variables: Univariate Case 107 5.1 Introduction 107 5.2 Distributions of Random Variables 108 5.3 Discrete and Continuous Random Variables 117 5.4 Functions of Random Variables 129 5.5 Survival and Hazard Functions 136 6 Random Variables: Multivariate Case 141 6.1 Bivariate Distributions 141 6.2 Marginal Distributions; Independence 148 6.3 Conditional Distributions 160 6.4 Bivariate Transformations 167 6.5 Multidimensional Distributions 176 7 Expectation 183 7.1 Introduction 183 7.2 Expected Value 184 7.3 Expectation as an Integral* 192 7.4 Properties of Expectation 199 7.5 Moments 207 7.6 Variance 215 7.7 Conditional Expectation 227 7.8 Inequalities 231 8 Selected Families of Distributions 237 8.1 Bernoulli Trials and Related Distributions 237 8.2 Hypergeometric Distribution 251 8.3 Poisson Distribution and Poisson Process 256 8.4 Exponential, Gamma and Related Distributions 269 8.5 Normal Distribution 276 8.6 Beta Distribution 286 9 Random Samples 293 9.1 Statistics and Sampling Distributions 293 9.2 Distributions Related to Normal 295 9.3 Order Statistics 300 9.4 Generating Random Samples 307 9.5 Convergence 312 9.6 Central Limit Theorem 322 10 Introduction to Statistical Inference 331 10.1 Overview 331 10.2 Basic Models 334 10.3 Sampling 336 10.4 Measurement Scales 342 11 Estimation 347 11.1 Introduction 347 11.2 Consistency 352 11.3 Loss, Risk, and Admissibility 355 11.4 Efficiency 361 11.5 Methods of Obtaining Estimators 368 11.6 Sufficiency 387 11.7 Interval Estimation 403 12 Testing Statistical Hypotheses 419 12.1 Introduction 419 12.2 Intuitive Background 423 12.3 Most Powerful Tests 432 12.4 Uniformly Most Powerful Tests 445 12.5 Unbiased Tests 452 12.6 Generalized Likelihood Ratio Tests 456 12.7 Conditional Tests 463 12.8 Tests and Confidence Intervals 466 12.9 Review of Tests for Normal Distributions 467 12.10 Monte Carlo, Bootstrap, and Permutation Tests 477 14 Linear Models 483 14.1 Introduction 483 14.2 Regression of the First and Second Kind 485 14.3 Distributional Assumptions 491 14.4 Linear Regression in the Normal Case 494 14.5 Testing Linearity 500 14.6 Prediction 503 14.7 Inverse Regression 505 14.8 BLUE 508 14.9 Regression Toward the Mean 510 14.10 Analysis of Variance 512 14.11 One-Way Layout 512 14.12 Two-Way Layout 516 14.13 ANOVA Models with Interaction 518 14.14 Further Extensions 522 15 Rank Methods 525 15.1 Introduction 525 15.2 Glivenko-Cantelli Theorem 526 15.3 Kolmogorov-Smirnov Tests 530 15.4 One-Sample Rank Tests 537 15.5 Two-Sample Rank Tests 544 15.6 Kruskal-Wallis Test 548 16 Analysis of Categorical Data 551 16.1 Introduction 551 16.2 Chi-Square Tests 553 16.3 Homogeneity and Independence 559 16.4 Consistency and Power 565 16.5 2x2 Contingency Tables 570 16.6 r x c Contingency Tables 578 17 Basics of Bayesian Statistics 583 17.1 Introduction 583 17.2 Prior and Posterior Distributions 584 17.3 Bayesian Inference 592 17.4 Final Comments 608 Appendix 1 609 Appendix 2 616 Bibliography 619 Answers to Odd-Numbered Problems 624 Index 632 Index 632MAGDALENA NIEWIADOMSKA-BUGAJ, PHD, is Professor and Chair of the Statistics Department at Western Michigan University. Dr. Niewiadomska-Bugaj's areas of interest include general statistical methodology, nonparametric statistics, classification, and categorical data analysis. She has published over 50 papers, books, and book chapters in theoretical and applied statistics The late ROBERT BARTOSZYNSKI, PHD, was Professor in the Department of Statistics at The Ohio State University. His scientific contributions included research in the theory of stochastic processes and modeling biological phenomena. Throughout his career, Dr Bartoszynski published books, book chapters, and over 100 journal articles.

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Robert / Niewiadomska-Bugaj Bartoszynski
Parution 01/03/2021
Nb. de pages 592
EAN13 9781119243809

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription