
Résumé
This unique volume will appeal especially to students by presenting a selective introduction to the main ideas of the subject in an easily accessible way. The material is ideal for a single course, but broad enough to provide students with a firm foundation from which to pursue research or develop applications in Riemannian geometry and other fields that use its tools.
Contents
Preface
1 What Is Curvature? 1
2 Review of Tensors, Manifolds, and Vector Bundles 11
3 Definitions and Examples of Riemannian Metrics 23
4 Connections 47
5 Riemannian Geodesics 65
6 Geodesics and Distance 91
7 Curvature 115
8 Riemannian Submanifolds 131
9 The Gauss-Bonnet Theorem 155
10 Jacobi Fields 173
11 Curvature and Topology 193
References 209
Index
L'auteur - John M. Lee
John M. Lee is Professor of Mathematics at the
University of Washington in Seattle, where he regularly
teaches graduate courses on the topology and geometry of
manifolds. He was the recipient of the American
Mathematical Societys Centennial Research Fellowship and he
is the author of two previous Springer books, Introduction
to Topological Manifolds (2000) and Riemannian Manifolds:
An Introduction to Curvature (1997).
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | John M. Lee |
Parution | 01/07/1999 |
Nb. de pages | 224 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 486g |
Intérieur | Noir et Blanc |
EAN13 | 9780387982717 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse