Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

Riesz Transforms, Hodge-Dirac Operators and Functional Calculus for Multipliers

Cedric / Kriegler Arhancet

280 pages, parution le 05/05/2022

Résumé

This book on recent research in noncommutative harmonic analysis treats the L p boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers.This book on recent research in noncommutative harmonic analysis treats the L p boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These L p operations are then shown to yield new examples of quantum compact metric spaces and spectral triples.

The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on L p . In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these L p operations can be formulated on L p spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background.

Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative L p spaces and analysts interested in the construction of Riesz transforms and Hodge-Dirac operators.

- 1. Introduction. - 2. Preliminaries. - 3. Riesz Transforms Associated to Semigroups of Markov Multipliers. - 4. Boundedness of H Functional Calculus of Hodge-Dirac Operators. - 5. Locally Compact Quantum Metric Spaces and Spectral Triples. - A. Appendix: Levy Measures and 1-Cohomology.

Cedric Arhancet is a French mathematician working in the preparatory cycle for engineering schools at Lycee Laperouse (France). He works in several areas of functional analysis including noncommutative L p -spaces, Fourier multipliers, semigroups of operators and noncommutative geometry. More recently, he has connected his research to Quantum Information Theory.

Christoph Kriegler is a German-French mathematician working at Universit Clermont Auvergne, France. His research interests lie in harmonic and functional analysis. In particular, he works on functional calculus for sectorial operators, and spectral multipliers in connection with geometry of Banach spaces on the one hand, and on the other hand on noncommutative L p espaces and operator spaces.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Cedric / Kriegler Arhancet
Parution 05/05/2022
Nb. de pages 280
EAN13 9783030990107

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription