Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Solved and Unsolved Problems in Number Theory
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Solved and Unsolved Problems in Number Theory

Solved and Unsolved Problems in Number Theory

Daniel Shanks

306 pages, parution le 27/04/1999 (3eme édition)

Résumé

The investigation of three problems, that of perfect numbers, that of periodic decimals, and that of Pythagorean numbers has given rise to much of elementary number theory, and the author shows how each result gives rise to further results and conjectures. He treats not only results and theorems ("solved problems") but also questions that are still open and conjectures ("unsolved problems"), making this a most exciting and unusual treatment. The author, a past editor of Mathematics of Computation, presents research done in the fifteen years between the first and second editions, with emphasis on results that were achieved with the aid of computers. The volume includes a substantial Bibliography.

Contents

Chapter I: From Perfect Numbers to the Quadratic Reciprocity Law

1 Perfect numbers
2 Euclid
3 Euler's converse proved
4 Euclid's algorithm
5 Cataldi and others
6 The prime number theorem
7 Two useful theorems
8 Fermat and others
9 Euler's generalization proved
10 Perfect numbers, II
11 Euler and $M_{31}$
12 Many conjectures and their interrelations
13 Splitting the primes into equinumerous classes
14 Euler's criterion formulated
15 Euler's criterion proved
16 Wilson's theorem
17 Gauss's criterion
18 The original Legendre symbol
19 The reciprocity law
20 The prime divisors of $n^2 +a$

Chapter II: The Underlying Structure

21 The residue classes as an invention
22 The residue classes as a tool
23 The residue classes as a group
24 Quadratic residues
25 Is the quadratic reciprocity law a deep theorem?
26 Congruential equations with a prime modulus
27 Euler's $\phi$ function
28 Primitive roots with a prime modulus
29 $\mathfrak{M}_{p}$ as a cyclic group
30 The circular parity switch
31 Primitive roots and Fermat numbers
32 Artin's conjectures
33 Questions concerning cycle graphs
34 Answers concerning cycle graphs
35 Factor generators of $\mathfrak{M}_{m}$
36 Primes in some arithmetic progressions and a general divisibility theorem
37 Scalar and vector indices
38 The other residue classes
39 The converse of Fermat's theorem
40 Sufficient conditions for primality

Chapter III: Pythagoreanism and Its Many Consequences

41 The Pythagoreans
42 The Pythagorean theorem
43 The $\sqrt 2$ and the crisis
44 The effect upon geometry
45 The case for Pythagoreanism
46 Three Greek problems
47 Three theorems of Fermat
48 Fermat's last "Theorem"
49 The easy case and infinite descent
50 Gaussian integers and two applications
51 Algebraic integers and Kummer's theorem
52 The restricted case, Sophie Germain, and Wieferich
53 Euler's "Conjecture"
54 Sum of two squares
55 A generalization and geometric number theory
56 A generalization and binary quadratic forms
57 Some applications
58 The significance of Fermat's equation
59 The main theorem
60 An algorithm
61 Continued fractions for $\sqrt N$
62 From Archimedes to Lucas
63 The Lucas criterion
64 A probability argument
65 Fibonacci numbers and the original Lucas test
Appendix to Chapters I-III
Supplementary comments, theorems, and exercises

Chapter IV: Progress

66 Chapter I fifteen years later
67 Artin's conjectures, II
68 Cycle graphs and related topics
69 Pseudoprimes and primality
70 Fermat's last "Theorem," II
71 Binary quadratic forms with negative discriminants
72 Binary quadratic forms with positive discriminants
73 Lucas and Pythagoras
74 The progress report concluded
75 The second progress report begins
76 On judging conjectures
77 On judging conjectures, II
78 Subjective judgement, the creation of conjectures and inventions
79 Fermat's last "Theorem," III
80 Computing and algorithms
81 $\scr{C}(3)\times\scr{C}(3)\times\scr{C}(3)\times\scr{C}(3)$ and all that
82 1993

Appendix

Statement on fundamentals

Table of definitions

References

Index

Caractéristiques techniques

  PAPIER
Éditeur(s) American Mathematical Society (AMS)
Auteur(s) Daniel Shanks
Parution 27/04/1999
Édition  3eme édition
Nb. de pages 306
Couverture Relié
EAN13 9780828412971

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription