Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Stationary Diffraction by Wedges: Method of Automorphic Functions on Complex Characteristics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Stationary Diffraction by Wedges: Method of Automorphic Functions on Complex Characteristics

Stationary Diffraction by Wedges: Method of Automorphic Functions on Complex Characteristics

Alexander / Merzon Komech

167 pages, parution le 16/09/2019

Résumé

This book presents a new and original method for the solution of boundary value problems in angles for second-order elliptic equations with constant coefficients and arbitrary boundary operators. This method turns out to be applicable to many different areas of mathematical physics, in particular to diffraction problems in angles and to the study of trapped modes on a sloping beach.

Giving the reader the opportunity to master the techniques of the modern theory of diffraction, the book introduces methods of distributions, complex Fourier transforms, pseudo-differential operators, Riemann surfaces, automorphic functions, and the Riemann-Hilbert problem.

The book will be useful for students, postgraduates and specialists interested in the application of modern mathematics to wave propagation and diffraction problems.


- Introduction. - Part I Survey of Diffraction Theory . - The Early Theory of Diffraction. - Fresnel-Kirchhoff Diffraction Theory. - Stationary and Time-Dependent Diffraction. - The Sommerfeld Theory of Diffraction by Half-Plane. - Diffraction byWedge After Sommerfeld's Article. - Part II Method of Automorphic Functions on Complex Characteristics . - Stationary Boundary Value Problems in Convex Angles. - Extension to the Plane. - Boundary Conditions via the Cauchy Data. - Connection Equation on the Riemann Surface. - On Equivalence of the Reduction. - Undetermined Algebraic Equations on the Riemann Surface. - Automorphic Functions on the Riemann Surface. - Functional Equation with a Shift. - Lifting to the Universal Covering. - The Riemann-Hilbert Problem on the Riemann Surface. - The Factorization. - The Saltus Problem and Final Formula. - The Reconstruction of Solution and the Fredholmness. - Extension of the Method to Non-convex Angle. - Comments.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Alexander / Merzon Komech
Parution 16/09/2019
Nb. de pages 167
EAN13 9783030266981

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription