Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Statistical Computing with R, Second Edition
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Statistical Computing with R, Second Edition

Statistical Computing with R, Second Edition

Maria L. Rizzo

474 pages, parution le 05/03/2019

Résumé

Computational statistics and statistical computing are two areas that employ computational, graphical, and numerical approaches to solve statistical problems, making the versatile R language an ideal computing environment for these fields. This second edition continues to encompass the traditional core material of computational statistics, with an emphasis on using the R language via an examples-based approach. It includes R code for all examples and R notes to help explain the R programming concepts. This edition also features a new chapter on nonparametric regression and smoothing.

1. Introduction
Statistical Computing
The R Environment
Getting Started with R and RStudio
Basic Syntax
Using the R Online Help System
Distributions and Statistical Tests
Functions
Arrays, Data Frames, and Lists
Formula Specifications
Graphics Introduction to ggplot
Workspace and Files
Using Scripts
Using Packages
Using R Markdown and knitr
Exercises

2. Probability and Statistics Review
Random Variables and Probability
Some Discrete Distributions
Some Continuous Distributions
Multivariate Normal Distribution
Limit Theorems
Statistics
Bayes' Theorem and Bayesian Statistics
Markov Chains

3. Methods for Generating Random Variables
Introduction
The Inverse Transform Method
The Acceptance-Rejection Method
Transformation Methods
Sums and Mixtures
Multivariate Distributions
Exercises

4. Generating Random Processes
Stochastic Processes
Brownian Motions
Exercises

5. Visualization of Multivariate Data
Introduction
Panel Displays
Surface Plots and 3D Scatter Plots
Contour Plots
The Grammar of Graphics and ggplot2
Other 2D Representations of Data
Principal Components Analysis
Exercises

6. Monte Carlo Integration and Variance Reduction
Introduction
Monte Carlo Integration
Variance Reduction
Antithetic Variables
Control Variates
Importance Sampling
Stratified Sampling
Stratified Importance Sampling
Exercises
RCode

7. Monte Carlo Methods in Inference
Introduction
Monte Carlo Methods for Estimation
Monte Carlo Methods for Hypothesis Tests
Application
Exercises

8. Bootstrap and Jackknife
The Bootstrap
The Jackknife
Bootstrap Confidence Intervals
Better Bootstrap Confidence Intervals
Application
Exercises

9. Resampling Applications
Jackknife-after-Bootstrap
Resampling for Regression Models
Influence
Exercises

10. Permutation Tests
Introduction
Tests for Equal Distributions
Multivariate Tests for Equal Distributions
Application
Exercises

11. Markov Chain Monte Carlo Methods
Introduction
The Metropolis-Hastings Algorithm
The Gibbs Sampler
Monitoring Convergence
Application
Exercises
R Code

12. Probability Density Estimation
Univariate Density Estimation
Kernel Density Estimation
Bivariate and Multivariate Density Estimation
Other Methods of Density Estimation
Exercises
R Code

13. Introduction to Numerical Methods in R
Introduction
Root-finding in One Dimension
Numerical Integration
Maximum Likelihood Problems
Application
Exercises

14. Optimization 401
Introduction
One-dimensional Optimization
Maximum likelihood estimation with mle
Two-dimensional Optimization
The EM Algorithm
Linear Programming - The Simplex Method
Application
Exercises

15. Programming Topics
Introduction
Benchmarking: Comparing the Execution Time of Code
Profiling
Object Size, Attributes, and Equality
Finding Source Code
Linking C/C++ Code using Rcpp
Application
Exercises

Maria Rizzo is Professor in the Department of Mathematics and Statistics at Bowling Green State University in Bowling Green, Ohio where she teaches statistics, actuarial science, computational statistics, statistical programming and data science. Prior to joining the faculty at BGSU in 2006, she was Assistant Professor in the Department of Mathematics at Ohio University in Athens, Ohio. Her main research area is energy statistics and distance correlation. She has supervised six PhD students graduating through 2018, and currently works with two continuing doctoral students. She is the software developer and maintainer of the energy package for R. She also enjoys writing books including a forthcoming joint research monograph on energy statistics.

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor&francis
Auteur(s) Maria L. Rizzo
Parution 05/03/2019
Nb. de pages 474
EAN13 9781466553323

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription