
Stochastic Modelling for Systems Biology
Darren J. Wilkinson - Collection Mathematical and Computational Biology Series
Résumé
Although stochastic kinetic models are increasingly accepted as the best way to represent and simulate genetic and biochemical networks, most researchers in the field have limited knowledge of stochastic process theory. The stochastic processes formalism provides a beautiful, elegant, and coherent foundation for chemical kinetics and there is a wealth of associated theory every bit as powerful and elegant as that for conventional continuous deterministic models. The time is right for an introductory text written from this perspective.
Stochastic Modelling for Systems Biology presents an accessible introduction to stochastic modelling using examples that are familiar to systems biology researchers. Focusing on computer simulation, the author examines the use of stochastic processes for modelling biological systems. He provides a comprehensive understanding of stochastic kinetic modelling of biological networks in the systems biology context. The text covers the latest simulation techniques and research material, such as parameter inference, and includes many examples and figures as well as software code in R for various applications.
While emphasizing the necessary probabilistic and stochastic methods, the author takes a practical approach, rooting his theoretical development in discussions of the intended application. Written with self-study in mind, the book includes technical chapters that deal with the difficult problems of inference for stochastic kinetic models from experimental data. Providing enough background information to make the subject accessible to the non-specialist, the book integrates a fairly diverse literature into a single convenient and notationally consistent source.
Sommaire
- Introduction to biological modelling
- Representation of biochemical networks
- Probability models
- Stochastic simulation
- Markov processes
- Chemical and biochemical kinetics
- Case studies
- Beyond the Gillespie algorithm
- Bayesian inference and MCMC
- Inference for stochastic kinetic models
- Conclusions
- SBML models
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | Darren J. Wilkinson |
Collection | Mathematical and Computational Biology Series |
Parution | 03/05/2006 |
Nb. de pages | 280 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 525g |
Intérieur | Noir et Blanc |
EAN13 | 9781584885405 |
ISBN13 | 978-1-58488-540-5 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Recherche opérationnelle
- Sciences Mathématiques Mathématiques par matières Optimisation
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Statistiques Stochastique
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Sciences Sciences de la vie
- Sciences Sciences de la vie Biologie