Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Structural Equation Modelling
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Structural Equation Modelling

Structural Equation Modelling

A Bayesian Approach

Sik-Yum Lee - Collection Wiley Series in Probability and Statistics

444 pages, parution le 12/02/2007

Résumé

Structural equation modeling (SEM) is a powerful multivariate method allowing the evaluation of a series of simultaneous hypotheses about the impacts of latent and manifest variables on other variables, taking measurement errors into account. As SEMs have grown in popularity in recent years, new models and statistical methods have been developed for more accurate analysis of more complex data. A Bayesian approach to SEMs allows the use of prior information resulting in improved parameter estimates, latent variable estimates, and statistics for model comparison, as well as offering more reliable results for smaller samples.

Structural Equation Modeling introduces the Bayesian approach to SEMs, including the selection of prior distributions and data augmentation, and offers an overview of the subject's recent advances.

  • Demonstrates how to utilize powerful statistical computing tools, including the Gibbs sampler, the Metropolis-Hasting algorithm, bridge sampling and path sampling to obtain the Bayesian results.
  • Discusses the Bayes factor and Deviance Information Criterion (DIC) for model comparison.
  • Includes coverage of complex models, including SEMs with ordered categorical variables, and dichotomous variables, nonlinear SEMs, two-level SEMs, multisample SEMs, mixtures of SEMs, SEMs with missing data, SEMs with variables from an exponential family of distributions, and some of their combinations.
  • Illustrates the methodology through simulation studies and examples with real data from business management, education, psychology, public health and sociology.
  • Demonstrates the application of the freely available software WinBUGS via a supplementary website featuring computer code and data sets.

Structural Equation Modeling: A Bayesian Approach is a multi-disciplinary text ideal for researchers and students in many areas, including: statistics, biostatistics, business, education, medicine, psychology, public health and social science.

L'auteur - Sik-Yum Lee

Sik-Yum Lee, Department of Statistics, Chinese University of Hong Kong Chair of department. Excellent research record, with over 100 published papers in leading journals.

Sommaire

  • Introduction.
  • Some Basic Structural Equation Models.
  • Covariance Structure Analysis.
  • Bayesian Estimation of Structural Equation Models.
  • Model Comparison and Model Checking.
  • Structural Equation Models with Continuous and Ordered Categorical Variables.
  • Structural Equation Models with Dichotomous Variables.
  • Nonlinear Structural Equation Models.
  • Two-level Nonlinear Structural Equation Models.
  • Multisample Analysis of Structural Equation Models.
  • Finite Mixtures in Structural Equation Models.
  • Structural Equation Models with Missing Data.
  • Structural Equation Models with Exponential Family of Distributions.
  • Conclusion.
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) Sik-Yum Lee
Collection Wiley Series in Probability and Statistics
Parution 12/02/2007
Nb. de pages 444
Format 16 x 23,5
Couverture Relié
Poids 783g
Intérieur Noir et Blanc
EAN13 9780470024232
ISBN13 978-0-470-02423-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription