
Substitution and Tiling Dynamics: Introduction to Self-inducing Structures: CIRM Jean-Morlet Chair,
Shigeki / Arnoux Akiyama - Collection Yellow Sale 2024
Résumé
Tilings have been designed, used and studied for centuries in various contexts. This field grew significantly after the discovery of aperiodic self-similar tilings in the 60s, linked to the proof of the undecidability of the Domino problem, and was driven futher by Dan Shechtman's discovery of quasicrystals in 1984. Tiling problems establish a bridge between the mutually influential fields of geometry, dynamical systems, aperiodic order, computer science, number theory, algebra and logic. The main properties of tiling dynamical systems are covered, with expositions on recent results in self-similarity (and its generalizations, fusions rules and S-adic systems), algebraic developments connected to physics, games and undecidability questions, and the spectrum of substitution tilings.Delone sets and dynamical systems.- Introduction to hierarchical tiling dynamical systems.- S-adic sequences : dynamics, arithmetic, and geometry.- Operators and Algebras for Aperiodic Tilings.- From games to morphisms.- The Undecidability of the Domino Problem.- Renormalisation for block substitutions.- Yet another characterization of the Pisot conjecture.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Shigeki / Arnoux Akiyama |
Collection | Yellow Sale 2024 |
Parution | 05/12/2020 |
Nb. de pages | 456 |
Couverture | Broché |
EAN13 | 9783030576653 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse