
Table of Integrals, Series and Products
Résumé
Contents
- Preface to the Sixth Edition xxi
- Acknowledgments xxiii
- The order of presentation of the formulas xxvii
- Use of the tables xxxi
- Special functions xxxix
- Notation xliii
- Note on the bibliographic references xlvii
- 0.1 Finite sums 1
- 0.2 Numerical series and infinite products 6
- 0.3 Functional series 15
- 0.4 Certain formulas from differential calculus 21
- 1.1 Power of Binomials 25
- 1.2 The Exponential Function 26
- 1.3-1.4 Trigonometric and Hyperbolic Functions 27
- 1.5 The Logarithm 51
- 1.6 The Inverse Trigonometric and Hyperbolic Functions 54
- 2.0 Introduction 61
- 2.1 Rational functions 64
- 2.2 Algebraic functions 80
- 2.3 The Exponential Function 104
- 2.4 Hyperbolic Functions 105
- 2.5-2.6 Trigonometric Functions 147
- 2.7 Logarithms and Inverse-Hyperbolic Functions 233
- 2.8 Inverse Trigonometric Functions 237
- 3.0 Introduction 243
- 3.1-3.2 Power and Algebraic Functions 248
- 3.3-3.4 Exponential Functions 331
- 3.5 Hyperbolic Functions 365
- 3.6-4.1 Trigonometric Functions 384
- 4.2-4.4 Logarithmic Functions 522
- 4.5 Inverse Trigonometric Functions 596
- 4.6 Multiple Integrals 604
- 5.1 Elliptic Integrals and Functions 615
- 5.2 The Exponential Integral Function 622
- 5.3 The Sine Integral and the Cosine Integral 623
- 5.4 The Probability Integral and Fresnel Integrals 623
- 5.5 Bessel Functions 624
- 6.1 Elliptic Integrals and Functions 625
- 6.2-6.3 The Exponential Integral Function and Functions Generated by It 630
- 6.4 The Gamma Function and Functions Generated by It 644
- 6.5-6.7 Bessel Functions 652
- 6.8 Functions Generated by Bessel Functions 745
- 6.9 Mathieu Functions 755
- 7.1-7.2 Associated Legendre Functions 762
- 7.3-7.4 Orthogonal Polynomials 788
- 7.5 Hypergeometric Functions 806
- 7.6 Confluent Hypergeometric Functions 814
- 7.7 Parabolic Cylinder Functions 835
- 7.8 Meijer's and MacRobert's Functions (G and E) 843
- 8.1 Elliptic integrals and functions 851
- 8.2 The Exponential Integral Function and Functions Generated by It 875
- 8.3 Euler's Integrals of the First and Second Kinds 883
- 8.4-8.5 Bessel Functions and Functions Associated with Them 900
- 8.6 Mathieu Functions 940
- 8.7-8.8 Associated Legendre Functions 948
- 8.9 Orthogonal Polynomials 972
- 9.1 Hypergeometric Functions 995
- 9.2 Confluent Hypergeometric Functions 1012
- 9.3 Meijer's G-Function 1022
- 9.4 MacRobert's E-Function 1025
- 9.5 Riemann's Zeta Functions [zeta] (z, q), and [zeta] (z), and the Functions [Phi] (z, s, v) and [xi] (s) 1026
- 9.6 Bernoulli numbers and polynomials, Euler numbers 1030
- 9.7 Constants 1035
- 10.1-10.8 Vectors, Vector Operators, and Integral Theorems 1039
- 11.1-11.3 General Algebraic Inequalities 1049
- 12.11 Mean value theorems 1053
- 12.21 Differentiation of definite integral containing a parameter 1054
- 12.31 Integral inequalities 1054
- 12.41 Convexity and Jensen's inequality 1056
- 12.51 Fourier series and related inequalities 1056
- 13.11-13.12 Special matrices 1059
- 13.21 Quadratic forms 1061
- 13.31 Differentiation of matrices 1063
- 13.41 The matrix exponential 1064
- 14.11 Expansion of second- and third-order determinants 1065
- 14.12 Basic properties 1065
- 14.13 Minors and cofactors of a determinant 1065
- 14.14 Principal minors 1066
- 14.15 Laplace expansion of a determinant 1066
- 14.16 Jacobi's theorem 1066
- 14.17 Hadamard's theorem 1066
- 14.18 Hadamard's inequality 1067
- 14.21 Cramer's rule 1067
- 14.31 Some special determinants 1068
- 15.1-15.9 Vector Norms 1071
- 15.11 General properties 1071
- 15.21 Principal vector norms 1071
- 15.31 Matrix norms 1072
- 15.41 Principal natural norms 1072
- 15.51 Spectral radius of a square matrix 1073
- 15.61 Inequalities involving eigenvalues of matrices 1074
- 15.71 Inequalities for the characteristic polynomial 1074
- 15.81-15.82 Named theorems on eigenvalues 1076
- 15.91 Variational principles 1081
- 16.1-16.9 Results relating to the solution of ordinary differential equations 1083
- 16.11 First-order equations 1083
- 16.21 Fundamental inequalities and related results 1084
- 16.31 First-order systems 1085
- 16.41 Some special types of elementary differential equations 1087
- 16.51 Second-order equations 1088
- 16.61-16.62 Oscillation and non-oscillation theorems for second-order equations 1090
- 16.71 Two related comparison theorems 1093
- 16.81-16.82 Non-oscillatory solutions 1093
- 16.91 Some growth estimates for solutions of second-order equations 1094
- 16.92 Boundedness theorems 1096
- 17.1-17.4 Integral Transforms 1099
- 18.1-18.3 Definition, Bilateral, and Unilateral z-Transforms 1127
- References 1133
- Supplemental references 1137
- Function and constant index 1143
- General index 1153
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Apress |
Auteur(s) | I.S. Gradshteyn, I.M. Ryzhik |
Parution | 01/07/2001 |
Édition | 6eme édition |
Nb. de pages | 1164 |
Format | 19,5 x 24 |
Couverture | Relié |
Poids | 2350g |
Intérieur | Noir et Blanc |
EAN13 | 9780122947575 |
ISBN13 | 978-0-12-294757-5 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse