Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Table of Integrals, Series and Products
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Table of Integrals, Series and Products

Table of Integrals, Series and Products

I.S. Gradshteyn, I.M. Ryzhik

1164 pages, parution le 01/07/2001 (6eme édition)

Résumé

This sixth edition of the best-selling Table of Integrals, Series, and Products includes hundred's of corrections t o the previous edition. Table of Integrals, Series, and Products, Sixth Edition, is a compilation of over 10,000 integrals, or more simply mathematical formulas, and it is improbable that anyone anywhere at anytime ever uses or has used every integral in this book. They are selected and used as needed, so occasionally someone will use one for the first time and find a slight error in the formula. It is an essential reference for mathematicians, scientists, and engineers, who rely on it when identifying and subsequently solving extremely complex problems. Table of Integrals, Series, and Products, 6th Edition is designed for use by mathematicians, scientists, and professional engineers who need to solve complex mathematical problems.

Contents

  • Preface to the Sixth Edition xxi
  • Acknowledgments xxiii
  • The order of presentation of the formulas xxvii
  • Use of the tables xxxi
  • Special functions xxxix
  • Notation xliii
  • Note on the bibliographic references xlvii
0 Introduction 1
  • 0.1 Finite sums 1
  • 0.2 Numerical series and infinite products 6
  • 0.3 Functional series 15
  • 0.4 Certain formulas from differential calculus 21
1 Elementary Functions 25
  • 1.1 Power of Binomials 25
  • 1.2 The Exponential Function 26
  • 1.3-1.4 Trigonometric and Hyperbolic Functions 27
  • 1.5 The Logarithm 51
  • 1.6 The Inverse Trigonometric and Hyperbolic Functions 54
2 Indefinite Integrals of Elementary Functions 61
  • 2.0 Introduction 61
  • 2.1 Rational functions 64
  • 2.2 Algebraic functions 80
  • 2.3 The Exponential Function 104
  • 2.4 Hyperbolic Functions 105
  • 2.5-2.6 Trigonometric Functions 147
  • 2.7 Logarithms and Inverse-Hyperbolic Functions 233
  • 2.8 Inverse Trigonometric Functions 237
3-4 Definite Integrals of Elementary Functions 243
  • 3.0 Introduction 243
  • 3.1-3.2 Power and Algebraic Functions 248
  • 3.3-3.4 Exponential Functions 331
  • 3.5 Hyperbolic Functions 365
  • 3.6-4.1 Trigonometric Functions 384
  • 4.2-4.4 Logarithmic Functions 522
  • 4.5 Inverse Trigonometric Functions 596
  • 4.6 Multiple Integrals 604
5 Indefinite Integrals of Special Functions 615
  • 5.1 Elliptic Integrals and Functions 615
  • 5.2 The Exponential Integral Function 622
  • 5.3 The Sine Integral and the Cosine Integral 623
  • 5.4 The Probability Integral and Fresnel Integrals 623
  • 5.5 Bessel Functions 624
6-7 Definite Integrals of Special Functions 625
  • 6.1 Elliptic Integrals and Functions 625
  • 6.2-6.3 The Exponential Integral Function and Functions Generated by It 630
  • 6.4 The Gamma Function and Functions Generated by It 644
  • 6.5-6.7 Bessel Functions 652
  • 6.8 Functions Generated by Bessel Functions 745
  • 6.9 Mathieu Functions 755
  • 7.1-7.2 Associated Legendre Functions 762
  • 7.3-7.4 Orthogonal Polynomials 788
  • 7.5 Hypergeometric Functions 806
  • 7.6 Confluent Hypergeometric Functions 814
  • 7.7 Parabolic Cylinder Functions 835
  • 7.8 Meijer's and MacRobert's Functions (G and E) 843
8-9 Special Functions 851
  • 8.1 Elliptic integrals and functions 851
  • 8.2 The Exponential Integral Function and Functions Generated by It 875
  • 8.3 Euler's Integrals of the First and Second Kinds 883
  • 8.4-8.5 Bessel Functions and Functions Associated with Them 900
  • 8.6 Mathieu Functions 940
  • 8.7-8.8 Associated Legendre Functions 948
  • 8.9 Orthogonal Polynomials 972
  • 9.1 Hypergeometric Functions 995
  • 9.2 Confluent Hypergeometric Functions 1012
  • 9.3 Meijer's G-Function 1022
  • 9.4 MacRobert's E-Function 1025
  • 9.5 Riemann's Zeta Functions [zeta] (z, q), and [zeta] (z), and the Functions [Phi] (z, s, v) and [xi] (s) 1026
  • 9.6 Bernoulli numbers and polynomials, Euler numbers 1030
  • 9.7 Constants 1035
10 Vector Field Theory 1039
  • 10.1-10.8 Vectors, Vector Operators, and Integral Theorems 1039
11 Algebraic Inequalities 1049
  • 11.1-11.3 General Algebraic Inequalities 1049
12 Integral Inequalities 1053
  • 12.11 Mean value theorems 1053
  • 12.21 Differentiation of definite integral containing a parameter 1054
  • 12.31 Integral inequalities 1054
  • 12.41 Convexity and Jensen's inequality 1056
  • 12.51 Fourier series and related inequalities 1056
13 Matrices and related results 1059
  • 13.11-13.12 Special matrices 1059
  • 13.21 Quadratic forms 1061
  • 13.31 Differentiation of matrices 1063
  • 13.41 The matrix exponential 1064
14 Determinants 1065
  • 14.11 Expansion of second- and third-order determinants 1065
  • 14.12 Basic properties 1065
  • 14.13 Minors and cofactors of a determinant 1065
  • 14.14 Principal minors 1066
  • 14.15 Laplace expansion of a determinant 1066
  • 14.16 Jacobi's theorem 1066
  • 14.17 Hadamard's theorem 1066
  • 14.18 Hadamard's inequality 1067
  • 14.21 Cramer's rule 1067
  • 14.31 Some special determinants 1068
15 Norms 1071
  • 15.1-15.9 Vector Norms 1071
  • 15.11 General properties 1071
  • 15.21 Principal vector norms 1071
  • 15.31 Matrix norms 1072
  • 15.41 Principal natural norms 1072
  • 15.51 Spectral radius of a square matrix 1073
  • 15.61 Inequalities involving eigenvalues of matrices 1074
  • 15.71 Inequalities for the characteristic polynomial 1074
  • 15.81-15.82 Named theorems on eigenvalues 1076
  • 15.91 Variational principles 1081
16 Ordinary differential equations 1083
  • 16.1-16.9 Results relating to the solution of ordinary differential equations 1083
  • 16.11 First-order equations 1083
  • 16.21 Fundamental inequalities and related results 1084
  • 16.31 First-order systems 1085
  • 16.41 Some special types of elementary differential equations 1087
  • 16.51 Second-order equations 1088
  • 16.61-16.62 Oscillation and non-oscillation theorems for second-order equations 1090
  • 16.71 Two related comparison theorems 1093
  • 16.81-16.82 Non-oscillatory solutions 1093
  • 16.91 Some growth estimates for solutions of second-order equations 1094
  • 16.92 Boundedness theorems 1096
17 Fourier, Laplace, and Mellin Transforms 1099
  • 17.1-17.4 Integral Transforms 1099
18 The z-transform 1127
  • 18.1-18.3 Definition, Bilateral, and Unilateral z-Transforms 1127
  • References 1133
  • Supplemental references 1137
  • Function and constant index 1143
  • General index 1153

Caractéristiques techniques

  PAPIER
Éditeur(s) Apress
Auteur(s) I.S. Gradshteyn, I.M. Ryzhik
Parution 01/07/2001
Édition  6eme édition
Nb. de pages 1164
Format 19,5 x 24
Couverture Relié
Poids 2350g
Intérieur Noir et Blanc
EAN13 9780122947575
ISBN13 978-0-12-294757-5

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription