Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Pro
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Pro

The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Pro

J. L. Synge

440 pages, parution le 21/03/2012

Résumé

This 1957 book was written to help physicists and engineers solve partial differential equations subject to boundary conditions. The complexities of calculation are illuminated throughout by simple, intuitive geometrical pictures. This book will be of value to anyone with an interest in solutions to boundary value problems in mathematical physics.Originally published in 1957, this book was written to provide physicists and engineers with a means of solving partial differential equations subject to boundary conditions. The text gives a systematic and unified approach to a wide class of problems, based on the fact that the solution may be viewed as a point in function-space, this point being the intersection of two linear subspaces orthogonal to one another. Using this method the solution is located on a hypercircle in function-space, and the approximation is improved by reducing the radius of the hypercircle. The complexities of calculation are illuminated throughout by simple, intuitive geometrical pictures. This book will be of value to anyone with an interest in solutions to boundary value problems in mathematical physics.Preface; Introduction; Part I. No Metric: 1. Geometry of function-space without a metric; Part II. Positive-Definite Metric: 2. Geometry of function-space with positive-definite metric; 3. The dirichlet problem for a finite domain in the Euclidean plane; 4. The torsion problem; 5. Various boundary value problems; Part III. Indefinite Metric: 6. Geometry of function-space with indefinite metric; 7. Vibration problems; Note A. The torsion of a hollow square; Note B. The Green's tensor or fundamental solution for the equilibrium of an anistropic elastic body; Bibliography; Index.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) J. L. Synge
Parution 21/03/2012
Nb. de pages 440
EAN13 9781107666559

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription