Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups

The Large Sieve and its Applications: Arithmetic Geometry, Random Walks and Discrete Groups

E. Kowalski

Parution le 21/05/2008

Résumé

The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory.Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups.Preface; Prerequisites and notation; 1. Introduction; 2. The principle of the large sieve; 3. Group and conjugacy sieves; 4. Elementary and classical examples; 5. Degrees of representations of finite groups; 6. Probabilistic sieves; 7. Sieving in discrete groups; 8. Sieving for Frobenius over finite fields; Appendix A. Small sieves; Appendix B. Local density computations over finite fields; Appendix C. Representation theory; Appendix D. Property (T) and Property ( ); Appendix E. Linear algebraic groups; Appendix F. Probability theory and random walks; Appendix G. Sums of multiplicative functions; Appendix H. Topology; Bibliography; Index.Emmanuel Kowalski is Professor in the Departement Mathematik at ETH Zurich.

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) E. Kowalski
Parution 21/05/2008
EAN13 9780521888516

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription