Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Time Series: A Data Analysis Approach Using R
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Time Series: A Data Analysis Approach Using R

Time Series: A Data Analysis Approach Using R

Robert / Stoffer Shumway

259 pages, parution le 19/05/2019

Résumé

The goals of this text are to develop the skills and an appreciation for the richness and versatility of modern time series analysis as a tool for analyzing dependent data. A useful feature of the presentation is the inclusion of nontrivial data sets illustrating the richness of potential applications to problems in the biological, physical, and social sciences as well as medicine. The text presents a balanced and comprehensive treatment of both time and frequency domain methods with an emphasis on data analysis.

Numerous examples using data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and the analysis of economic and financial problems. The text can be used for a one semester/quarter introductory time series course where the prerequisites are an understanding of linear regression, basic calculus-based probability skills, and math skills at the high school level. All of the numerical examples use the R statistical package without assuming that the reader has previously used the software.

Robert H. Shumway is Professor Emeritus of Statistics, University of California, Davis. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is the author of numerous texts and served on editorial boards such as the Journal of Forecasting and the Journal of the American Statistical Association .

David S. Stoffer is Professor of Statistics, University of Pittsburgh. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is currently on the editorial boards of the Journal of Forecasting , the Annals of Statistical Mathematics , and the Journal of Time Series Analysis . He served as a Program Director in the Division of Mathematical Sciences at the National Science Foundation and as an Associate Editor for the Journal of the American Statistical Association and the Journal of Business & Economic Statistics .

1. Time Series Elements
Introduction
Time Series Data
Time Series Models
Problems

2. Correlation and Stationary Time Series
Measuring Dependence
Stationarity
Estimation of Correlation
Problems

3. Time Series Regression and EDA
Ordinary Least Squares for Time Series
Exploratory Data Analysis
Smoothing Time Series
Problems

4. ARMA Models
Autoregressive Moving Average Models
Correlation Functions
Estimation
Forecasting
Problems

5. ARIMA Models
Integrated Models
Building ARIMA Models
Seasonal ARIMA Models
Regression with Autocorrelated Errors *
Problems

6. Spectral Analysis and Filtering
Periodicity and Cyclical Behavior
The Spectral Density
Linear Filters *
Problems

7. Spectral Estimation
Periodogram and Discrete Fourier Transform
Nonparametric Spectral Estimation
Parametric Spectral Estimation
Coherence and Cross-Spectra *
Problems

8. Additional Topics *
GARCH Models
Unit Root Testing
Long Memory and Fractional Differencing
State Space Models
Cross-Correlation Analysis and Prewhitening
Bootstrapping Autoregressive Models
Threshold Autoregressive Models
Problems

Appendix A R Supplement
Installing R
Packages and ASTSA
Getting Help
Basics
Regression and Time Series Primer
Graphics

Appendix B Probability and Statistics Primer
Distributions and Densities
Expectation, Mean and Variance
Covariance and Correlation
Joint and Conditional Distributions

Appendix C Complex Number Primer
Complex Numbers
Modulus and Argument
The Complex Exponential Function
Other Useful Properties
Some Trigonometric Identities

Appendix D Additional Time Domain Theory
MLE for an AR()
Causality and Invertibility
ARCH Model Theory

Hints for Selected Exercises

Robert H. Shumway is Professor Emeritus of Statistics, University of California, Davis. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is the author of numerous texts and served on editorial boards such as the Journal of Forecasting and the Journal of the American Statistical Association. David S. Stoffer is Professor of Statistics, University of Pittsburgh. He is a Fellow of the American Statistical Association and has won the American Statistical Association Award for Outstanding Statistical Application. He is currently on the editorial boards of the Journal of Forecasting, the Annals of Statistical Mathematics, and the Journal of Time Series Analysis. He served as a Program Director in the Division of Mathematical Sciences at the National Science Foundation and as an Associate Editor for the Journal of the American Statistical Association and the Journal of Business & Economic Statistics.

Caractéristiques techniques

  PAPIER
Éditeur(s) Taylor&francis
Auteur(s) Robert / Stoffer Shumway
Parution 19/05/2019
Nb. de pages 259
EAN13 9780367221096

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription