Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Topology of Infinite-Dimensional Manifolds
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Topology of Infinite-Dimensional Manifolds

Topology of Infinite-Dimensional Manifolds

Katsuro Sakai - Collection Yellow Sale 2023

619 pages, parution le 21/11/2020

Résumé

An infinite-dimensional manifold is a topological manifold modeled on some infinite-dimensional homogeneous space called a model space. In this book, the following spaces are considered model spaces: Hilbert space (or non-separable Hilbert spaces), the Hilbert cube, dense subspaces of Hilbert spaces being universal spaces for absolute Borel spaces, the direct limit of Euclidean spaces, and the direct limit of Hilbert cubes (which is homeomorphic to the dual of a separable infinite-dimensional Banach space with bounded weak-star topology).

This book is designed for graduate students to acquire knowledge of fundamental results on infinite-dimensional manifolds and their characterizations. To read and understand this book, some background is required even for senior graduate students in topology, but that background knowledge is minimized and is listed in the first chapter so that references can easily be found. Almost all necessary background information is found in Geometric Aspects of General Topology, the author's first book.

Many kinds of hyperspaces and function spaces are investigated in various branches of mathematics, which are mostly infinite-dimensional. Among them, many examples of infinite-dimensional manifolds have been found. For researchers studying such objects, this book will be very helpful. As outstanding applications of Hilbert cube manifolds, the book contains proofs of the topological invariance of Whitehead torsion and Borsuk's conjecture on the homotopy type of compact ANRs. This is also the first book that presents combinatorial -manifolds, the infinite-dimensional version of combinatorial n -manifolds, and proofs of two remarkable results, that is, any triangulation of each manifold modeled on the direct limit of Euclidean spaces is a combinatorial -manifold and the Hauptvermutung for them is true.

Chapter 1: Preliminaries and Background Results.- Chapter 2: Fundamental Results on Infinite-Dimensional Manifolds.- Chapter 3: Characterizations of Hilbert Manifolds and Hilbert Cube Manifolds.- Chapter 4: Triangulation of Hilbert Cube Manifolds and Related Topics.- Chapter 5: Manifolds Modeled on Homotopy Dense Subspaces of Hilbert Spaces.- Chapter 6: Manifolds Modeled on Direct Limits and Combinatorial Manifold.- Appendex: PL n-Manifolds and Combinatorial n-Manifolds.- Epilogue.- Bibliography.- Index.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Katsuro Sakai
Collection Yellow Sale 2023
Parution 21/11/2020
Nb. de pages 619
EAN13 9789811575747

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription