Résumé
This book focuses on unstable systems both from the classical and the quantum mechanical points of view and studies the relations between them. The first part deals with quantum systems. Here the main generally used methods today, such as the Gamow approach, and the Wigner-Weisskopf method, are critically discussed. The quantum mechanical Lax-Phillips theory developed by the authors, based on the dilation theory of Nagy and Foias and its more general extension to approximate semigroup evolution is explained.
The second part provides a description of approaches to classical stability analysis and introduces geometrical methods recently developed by the authors, which are shown to be highly effective in diagnosing instability and, in many cases, chaotic behavior. It is then shown that, in the framework of the theory of symplectic manifolds, there is a systematic algorithm for the construction of a canonical transformation of any standard potential model Hamiltonian to geometric form, making accessible powerful geometric methods for stability analysis in a wide range of applications.
Part III: Quantization.- Chapter 5: Second Quantization of geometric deviation. Dynamical instability. Dilation along a geodesic.- Part IV: Applications.- Chapter 6: Phonons. Resonances in semiconductors. Superconductivity (Cooper pairs). Properties of grapheme. Thermodynamic properties of chaotic systems. Gravitational waves.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Lawrence / Strauss Horwitz |
Parution | 15/07/2021 |
Nb. de pages | 221 |
EAN13 | 9783030315726 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse