Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Clustering for Data Mining
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Clustering for Data Mining

Clustering for Data Mining

A Data Recovery Approach

Boris Mirkin - Collection Computer Science and Data Analysis Series

266 pages, parution le 02/06/2005

Résumé

Often considered more as an art than a science, the field of clustering has been dominated by learning through examples and by choosing techniques almost through trial-and-error. Even the most popular clustering methods - K-Means for partitioning the data set and Ward's method for hierarchical clustering - have lacked the theoretical attention that would establish a firm relationship between the two methods and provide relevant interpretation aids.

Rather than the traditional set of ad hoc techniques, Clustering for Data Mining: A Data Recovery Approach presents a theory that not only closes gaps in K-Means and Ward methods, but also extends the methods into areas of current interest, such as clustering mixed scale data and incomplete clustering. The author suggests original methods for both cluster finding and cluster description; addresses related topics such as principal component analysis, contingency measures, and data visualization; and includes nearly 60 computational examples covering all stages of clustering, from data preprocessing to cluster validation and results interpretation. This author's unique attention to data recovery methods, theory-based advice, pre- and post-processing issues and clear, practical instructions for real-world data mining make this book ideally suited for virtually all purposes: for teaching, for self-study, and for professional reference.

Features

  • Introduces classical clustering methods extended, via the data recovery approach, to modern data mining tasks
  • Fills gaps in the established theory and corrects common misconceptions
  • Treats the two most popular methods, K-Means and Ward clustering, offering the first theoretically motivated instructions for automating all steps of data mining with clustering
  • Presents a wealth of computational examples covering all stages of clustering

Sommaire

  • Preface
  • List of Denotations
  • Introduction: Historical Remarks
  • What Is Clustering
  • What Is Data
  • K-means Clustering
  • Ward Hierarchical Clustering
  • Data Recovery Models
  • Different Clustering Approaches
  • General Issues
  • Conclusion: Data Recovery Approach in Clustering
  • Bibliography
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Chapman and Hall / CRC
Auteur(s) Boris Mirkin
Collection Computer Science and Data Analysis Series
Parution 02/06/2005
Nb. de pages 266
Format 16 x 24
Couverture Relié
Poids 558g
Intérieur Noir et Blanc
EAN13 9781584885344
ISBN13 978-1-58488-534-4

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription