
Combining Pattern Classifiers
Methods and Algorithms
Résumé
A unified, coherent, and expansive treatment of current classifier ensemble methods
Mail sorting, medical test reading, military target recognition, signature verification, meteorological forecast, DNA matching, fingerprint recognition. These are just a few of the areas requiring reliable, precise pattern recognition.
Although in the past, pattern recognition has focused on designing single classifiers, recently the focus has been on combining several classifiers and getting a consensus of results for greater accuracy. This interest in combining classifiers has grown astronomically in recent years, evolving into a rich and dynamic, if loosely structured, discipline. Combining Pattern Classifiers: Methods and Algorithms represents the first attempt to provide a comprehensive survey of this fast-growing field. In a clear and straightforward manner, the author provides a much-needed road map through a multifaceted and often controversial subject while effectively organizing and systematizing the current state of the art.
Covering a broad range of methodologies, algorithms, and theories, the text addresses such questions as:
- Why should we combine classifiers?
- What are the current approaches for building classifier ensembles?
- What fusion methods can we use?
- How do we measure diversity in a classifier ensemble and is diversity really a key factor to its success?
Replete with case studies and real-world applications, this groundbreaking text will be of interest to academics and researchers in the field seeking both new classification tools and new uses for the old ones.
L'auteur - Ludmila I. Kuncheva
Ludmila I. Kuncheva is a Senior Lecturer in the School of Informatics at the University of Wales, Bangor, UK.
Sommaire
- Fundamentals of Pattern Recognition
- Base Classifiers
- Multiple Classifier Systems
- Fusion of Label Outputs
- Fusion of Continuous-Valued Outputs
- Classifier Selection
- Bagging and Boosting
- Miscellanea
- Theoretical Views and Results
- Diversity in Classifier Ensembles
- Appendix A: Equivalence Between the Averaged Disagreement Measure Dav and Kohavi-Wolpert KW
- Appendix B: Matlab Code for Some Overproduce and Select Algorithms
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | Ludmila I. Kuncheva |
Parution | 05/08/2004 |
Nb. de pages | 350 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 655g |
Intérieur | Noir et Blanc |
EAN13 | 9780471210788 |
ISBN13 | 978-0-471-21078-8 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Algorithmique et informatique appliquée Réseaux de neurones
- Informatique Développement d'applications Algorithmique et informatique appliquée Reconnaissance des formes
- Informatique Développement d'applications Algorithmique et informatique appliquée Intelligence artificielle
- Sciences Mathématiques Mathématiques par matières Analyse Analyse de Fourier
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Techniques Robotique
- Sciences Techniques Intelligence artificielle I.A. appliquée
- Sciences Techniques Intelligence artificielle Systèmes experts
- Sciences Techniques Intelligence artificielle Réseaux de neurones
- Sciences Techniques Automatique