
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB
Résumé
- Describes the first-ever implementation of a major ODE/PDE library in JAVA
- Reviews the basic concepts of numerical integration
- Includes source code for all six languages covered
- Provides fixed step and variable step integrators that are capable of solving a broad spectrum of ODE and PDE problems
- Discusses truncation error monitoring and control, h and p refinement, stability and stiffness, and explicit and implicit algorithms, as they relate to ODE/PDE integration
- Demonstrates extensions to stiff systems via an ODE application
- Illustrates the application of ODE integration routines to PDEs through the method of lines
(MOL).
Scientists and engineers attempting to solve complex problems require efficient, effective ways of applying numerical methods to ODEs and PDEs. They need a resource that enables fast access to library routines in their choice of a programming language.
Ordinary and Partial Differential Equation Routines in C, C++, Fortran, Java, Maple, and MATLAB provides a set of ODE/PDE integration routines in the six most widely used languages in science and engineering, enabling scientists and engineers to apply ODE/PDE analysis toward solving complex problems.
This text concisely reviews integration algorithms, then analyzes the widely used Runge Kutta method ( since hyphenation is used here, I added it below; hyphenation could also be dropped since it is not used in the book). It first presents a complete code before discussing its components in detail, focusing on integration concepts such as error monitoring and control.
The format allows you to understand the basics of ODE/PDE integration, then calculate sample numerical solutions within your targeted programming language. The applications discussed can be used as templates for the development of a spectrum of new applications and associated codes.
L'auteur - H.J. Lee
L'auteur - W.E. Schiesser
Sommaire
- Some basics of ODE integration
- General Initial Value ODE Problem
- Origin of ODE Integrators in the Taylor Series
- The Runge-Kutta Method
- Accuracy of RK Methods
- Embedded RK Algorithms
- Library ODE Integrators
- Stability of RK Methods
- Solution of a 1 x 1 ODE system
- Programming in MATLAB
- Programming in C
- Programming in C++
- Programming in FORTRAN (all CAPs?)
- Programming in Java
- Programming in Maple
- Solution of a 2 x 2 ODE system
- Programming in MATLAB
- Programming in C
- Programming in C++
- Programming in FORTRAN
- Programming in Java
- Programming in Maple
- Solution of a linear PDE
- Programming in MATLAB
- Programming in C
- Programming in C++
- Programming in FORTRAN
- Programming in Java
- Programming in Maple
- Solution of a nonlinear PDE
- Programming in MATLAB
- Programming in C
- Programming in C++
- Programming in FORTRAN
- Programming in Java
- Programming in Maple
- Appendices
- Embedded Runge-Kutta Pairs
- Integrals from ODEs
- Stiff ODE Integration (title was changed)
- Alternate Forms of ODEs
- Spatial p Refinement
- Testing ODE/PDE Codes
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Chapman and Hall / CRC |
Auteur(s) | H.J. Lee, W.E. Schiesser |
Parution | 05/01/2004 |
Nb. de pages | 519 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 835g |
Intérieur | Noir et Blanc |
EAN13 | 9781584884231 |
ISBN13 | 978-1-58488-423-1 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Mathématiques Logiciels de calcul Maple
- Sciences Mathématiques Logiciels de calcul Matlab
- Sciences Mathématiques Logiciels de calcul Mathematica
- Sciences Physique Physique fondamentale Systèmes dynamiques
- Sciences Physique Mécanique Méthodes numériques
- Sciences Techniques Electronique Théorie du signal Traitement du signal