A Phase Transition Approach to High Temperature Superconductivity
Résumé
Table of Contents
| Preface | V | |
| 1 | Introduction | 1 |
| 1.1 | Cuprate superconductors | 1 |
| 1.1.1 | Structure | 2 |
| 1.1.2 | Doping | 3 |
| 1.1.3 | Effective mass anisotropy and spatial dimensionality | 7 |
| 1.1.4 | Pseudogap | 10 |
| 1.1.5 | Symmetry of the order parameter | 13 |
| 1.1.6 | Importance of critical fluctuations | 15 |
| 1.2 | Universal critical properties of continuous phase transitions | 18 |
| 1.2.1 | Static critical properties at finite temperature | 18 |
| 1.2.2 | Dynamic critical properties at finite temperature | 23 |
| 1.2.3 | Quantum critical properties | 25 |
| 1.3 | Finite size effect and corrections to scaling | 32 |
| 2 | Ginzburg - Landau phenomenology | 37 |
| 2.1 | London phenomenology | 37 |
| 2.2 | Ginzburg - Landau functional | 46 |
| 2.3 | Mean-field treatment | 48 |
| 2.3.1 | Meissner phase | 49 |
| 2.3.2 | Length scales: London penetration depth and correlation length | 51 |
| 2.3.3 | Classification of superconductors | 55 |
| 2.3.4 | Upper critical field | 57 |
| 2.4 | Flux quantization | 59 |
| 2.5 | London model and first flux penetration field | 61 |
| 2.6 | Effective mass anisotropy | 64 |
| 2.6.1 | 3D anisotropic London model | 67 |
| 3 | Gaussian thermal fluctuations | 73 |
| 3.1 | Gaussian fluctuations around the mean field solution | 73 |
| 3.2 | Gaussian order parameter fluctuations | 74 |
| 3.3 | Gaussian vector potential fluctuations | 79 |
| 3.4 | Relevance of vector potential fluctuations | 80 |
| 3.5 | Helicity modulus | 82 |
| 3.6 | Effective mass anisotropy | 85 |
| 3.7 | Fluctuation induced diamagnetism | 88 |
| 3.7.1 | Isotropic system | 88 |
| 3.7.2 | Effective mass anisotropy | 94 |
| 3.7.3 | Magnetic torque | 96 |
| 4 | Superfluidity and the n-vector model | 99 |
| 4.1 | Ideal Bose gas | 101 |
| 4.2 | Charged Bose gas subjected to a magnetic field | 109 |
| 4.3 | Weakly interacting Bose gas | 111 |
| 4.4 | Hydrodynamic approach | 114 |
| 4.5 | The n-vector model | 118 |
| 5 | Universality and scaling theory of classical critical phenomena at finite temperature | 125 |
| 5.1 | Static critical phenomena in isotropic systems | 125 |
| 5.2 | Superconductors with effective mass anisotropy | 136 |
| 5.3 | Dimensional analysis | 149 |
| 5.3.1 | Static critical properties | 149 |
| 5.3.2 | Classical dynamic critical phenomena | 151 |
| 5.4 | Implications of the universal critical amplitude relations | 153 |
| 6 | Experimental evidence for classical critical behavior | 157 |
| 6.1 | Critical behavior close to optimum doping | 157 |
| 6.1.1 | Specific heat in zero field | 157 |
| 6.1.2 | Temperature dependence of the penetration depth | 169 |
| 6.1.3 | Corrections to scaling | 171 |
| 6.1.4 | Temperature dependence of the diamagnetic susceptibility | 175 |
| 6.1.5 | Scaling of the magnetization | 175 |
| 6.1.6 | Crossing point phenomenon | 177 |
| 6.1.7 | Magnetic torque and universal scaling function | 181 |
| 6.1.8 | Magnetic field tuned phase transitions: Melting transition | 189 |
| 6.1.9 | Magnetic field tuned phase transitions: Superconductor - normal conductor and insulator transitions | 194 |
| 6.1.10 | Evidence for a Kosterlitz - Thouless - Berezinskii transition in thin films | 201 |
| 6.1.11 | Temperature driven 2D to 3D crossover | 206 |
| 6.2 | Doping dependence of the critical behavior | 212 |
| 6.3 | Evidence for dynamic scaling | 219 |
| 6.4 | Vortex glass to vortex fluid transition | 220 |
| 6.5 | The (H,T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations | 224 |
| 7 | Quantum Phase Transitions | 233 |
| 7.1 | Scaling theory of quantum critical phenomena | 233 |
| 7.2 | Quantum critical phenomena: conventional superconductors | 242 |
| 7.3 | Quantum critical phenomena: cuprate superconductors | 248 |
| 7.3.1 | Doping and disorder tuned superconductor to insulator transition | 248 |
| 7.3.2 | Film thickness tuned superconductor to insulator transition | 256 |
| 7.3.3 | Doping dependence of the chemical potential | 260 |
| 7.3.4 | Magnetic field tuned transition | 261 |
| 7.3.5 | Nature of the non-superconducting phase | 265 |
| 7.3.6 | Superconductor to normal conductor transition | 268 |
| 8 | Implications | 273 |
| 8.1 | Interlayer tunneling model | 273 |
| 8.2 | Symmetry of the order parameter | 276 |
| 8.3 | Suppression of the transition temperature due to dimensional crossover and quantum fluctuations | 277 |
| 8.4 | Pseudogap features | 280 |
| 8.5 | Relationship between low frequency conductivity and zero temperature penetration depth | 284 |
| 8.6 | Doping and pressure dependences of critical amplitudes | 289 |
| 8.7 | Doping dependence of isotope and pressure coefficients | 295 |
| 8.8 | Bose gas approach | 298 |
| 8.9 | Effective pair mass | 299 |
| 8.10 | Emerging phase diagrams | 301 |
| A | Mean field treatment | 309 |
| A.1 | Ising Model | 309 |
| A.2 | XY Model | 315 |
| B | XY model | 319 |
| B.1 | 3D-2D Crossover in the XY model | 319 |
| B.1.1 | 2D-XY model | 320 |
| B.1.2 | 3D-XY model | 324 |
| B.1.3 | Layered XY model | 327 |
| B.1.4 | Anisotropic XY model | 331 |
| B.2 | Superconducting networks and films | 332 |
| B.2.1 | Models | 332 |
| B.2.2 | Uniform superconducting films | 335 |
| C | Quantum phase transitions | 337 |
| C.1 | The harmonic oscillator | 337 |
| C.2 | Large-n limit of a model for distortive phase transitions | 339 |
| C.3 | Onset of superfluidity in the ideal Bose gas | 343 |
| C.4 | Superconductors | 344 |
| D | BCS theory | 351 |
| D.1 | Cooper instability | 351 |
| D.2 | Electron-phonon interaction | 354 |
| D.3 | Ground state in the BCS approximation | 355 |
| D.4 | Thermodynamic properties in the BCS - approximation | 361 |
| D.5 | Simple model | 363 |
| E | Superconducting properties of the attractive Hubbard model | 367 |
| E.1 | BCS--BEC crossover | 367 |
| E.2 | BCS treatment of the attractive Hubbard model | 379 |
| E.3 | Phase diagram of the attractive Hubbard model on a lattice | 388 |
| E.4 | 2D-XY behavior and KT transition in the attractive Hubbard model | 400 |
| References | 411 | |
| Index | 427 |
Caractéristiques techniques
| PAPIER | |
| Éditeur(s) | Imperial College Press |
| Auteur(s) | Thomas Schneider, J.M Singer |
| Parution | 01/07/2000 |
| Nb. de pages | 432 |
| Format | 16 x 22,4 |
| Couverture | Relié |
| Poids | 711g |
| Intérieur | Noir et Blanc |
| EAN13 | 9781860942419 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse