
Résumé
This book provides a tour through the main branches of the foundations of mathematics. It contains chapters covering elementary logic, basic set theory, recursion theory, Gödel's (and others') incompleteness theorems, model theory, independence results in set theory, nonstandard analysis, and constructive mathematics. In addition, this monograph discusses several topics not normally found in books of this type, such as fuzzy logic, nonmonotonic logic, and complexity theory.
The word "tour" in the title deserves some explanation. This word is meant to emphasize that this is not a textbook in the strict sense. To be sure, it has many of the features of a textbook, including exercises. But it is less structured, more free-flowing, than a standard text. It also lacks many of the details and proofs that one normally expects in a mathematics text. However, in almost all such cases there are references to more detailed treatments and the omitted proofs. Therefore, this book is actually quite suitable for use as a text at the university level (undergraduate or graduate), provided that the instructor is willing to provide supplementary material from time to time.
The most obvious advantage of this omission of detail is that this monograph is able to cover a lot more material than if it were a standard textbook of the same size. This de-emphasis on detail is also intended to help the reader concentrate on the big picture, the essential ideas of the subject, without getting bogged down in minutiae. This book could have been titled "A Survey of Mathematical Logic," but the author's choice of the word "tour" was deliberate. A survey sounds like a rather dry activity, carried out by technicians with instruments. Tours, on the other hand, are what people take on their vacations. They are intended to be fun. The goal of this book is similar: to provide an introduction to the foundations of mathematics that is substantial and stimulating, and at the same time a pleasure to read. It is designed so that any interested reader with some post-calculus experience in mathematics should be able to read it, enjoy it, and learn from it.
Sommaire
- Predicate Logic
- Axiomatic set Theory
- Recursion Theory and Computability
- Gödel's Incompletness Theorems
- Model Theory
- Contemporary Set Theory
- Nonstandard Analysis
- Constructive Mathematics
Caractéristiques techniques
PAPIER | |
Éditeur(s) | The Mathematical Association of America (MAA) |
Auteur(s) | Robert S. Wolf |
Parution | 03/03/2005 |
Nb. de pages | 414 |
Format | 15 x 22 |
Couverture | Relié |
Poids | 575g |
Intérieur | Noir et Blanc |
EAN13 | 9780883850367 |
ISBN13 | 978-0-883-85036-7 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Logique
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Logique floue
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques