Résumé
A mathematical gem-freshly cleaned and polished
This book is intended to be used as the text for a first course in combinatorics. the text has been shaped by two goals, namely, to make complex mathematics accessible to students with a wide range of abilities, interests, and motivations; and to create a pedagogical tool, useful to the broad spectrum of instructors who bring a variety of perspectives and expectations to such a course.
Features retained from the first edition:
- Lively and engaging writing style
- Timely and appropriate examples
- Numerous well-chosen exercises
- Flexible modular format
- Optional sections and appendices
Highlights of Second Edition enhancements:
- Smoothed and polished exposition, with a sharpened focus on key ideas
- Expanded discussion of linear codes
- New optional section on algorithms
- Greatly expanded hints and answers section
- Many new exercises and examples
Contents
- The Mathematics of Choice
- The Fundamental Counting Principle
- Pascal's Triangle
- Elementary Probability
- Error-Correcting Codes
- Combinatorial Identities
- Four Ways to Choose
- The Binomial and Multinomial Theorems
- Partitions
- Elementary Symmetric Functions
- Combinatorial Algorithms
- The Combinatorics of Finite Functions
- Stirling Numbers of the Second Kind
- Bells, Balls, and Urns
- The Principle of Inclusion and Exclusion
- Disjoint Cycles
- Stirling Numbers of the First Kind
- Pólya's Theory of Enumeration
- Function Composition
- Permutation Groups
- Burnside's Lemma
- Symmetry Groups
- Color Patterns
- Pólya's Theorem
- The Cycle Index Polynomial
- Generating Functions
- Difference Sequences
- Ordinary Generating Functions
- Applications of Generating Functions
- Exponential Generating Functions
- Recursive Techniques
- Enumeration in Graphs
- The Pigeonhole Principle
- Edge Colorings and Ramsey Theory
- Chromatic Polynomials
- Planar Graphs
- Matching Polynomials
- Oriented Graphs
- Graphic Partitions
- Codes and Designs
- Linear Codes
- Decoding Algorithms
- Latin Squares
- Balanced Incomplete Block Designs
- Appendices
- Bibliography
- Hints and Answers to Selected Odd-Numbered Exercises
- Index of Notation
- Index
L'auteur - Russell Merris
RUSSELL MERRIS, PhD, is Professor of Mathematics and Computer Science at California State University, Hayward. Among his other books is Graph Theory, also published by Wiley.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | Russell Merris |
Parution | 15/09/2003 |
Édition | 2eme édition |
Nb. de pages | 568 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 660g |
Intérieur | Noir et Blanc |
EAN13 | 9780471262961 |
ISBN13 | 978-0-471-26296-1 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Logique
- Sciences Mathématiques Mathématiques par matières Algèbre Cours
- Sciences Mathématiques Mathématiques par matières Algèbre Exercices
- Sciences Mathématiques Mathématiques par matières Logique
- Sciences Mathématiques Mathématiques par matières Logique Logique floue
- Sciences Mathématiques Mathématiques par matières Logique Algèbre de Boole
- Sciences Mathématiques Mathématiques par matières Théorie des ensembles
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques