
Résumé
This book contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.
Contents- 1. Introduction
- 2. Conservation laws and differential equations
- 3. Characteristics and Riemann problems for linear hyperbolic equations
- 4. Finite-volume methods
- 5. Introduction to the CLAWPACK software
- 6. High resolution methods
- 7. Boundary conditions and ghost cells
- 8. Convergence, accuracy, and stability
- 9. Variable-coefficient linear equations
- 10. Other approaches to high resolution
- 11. Nonlinear scalar conservation laws
- 12. Finite-volume methods for nonlinear scalar conservation laws
- 13. Nonlinear systems of conservation laws
- 14. Gas dynamics and the Euler equations
- 15. Finite-volume methods for nonlinear systems
- 16. Some nonclassical hyperbolic problems
- 17. Source terms and balance laws
- 18. Multidimensional hyperbolic problems
- 19. Multidimensional numerical methods
- 20. Multidimensional scalar equations
- 21. Multidimensional systems
- 22. Elastic waves
- 23. Finite-volume methods on quadrilateral grids
- Bibliography
- Index.
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Cambridge University Press |
Auteur(s) | Randall J. LeVeque |
Parution | 17/03/2003 |
Nb. de pages | 578 |
Format | 17,5 x 24,5 |
Couverture | Broché |
Poids | 985g |
Intérieur | Noir et Blanc |
EAN13 | 9780521009249 |
ISBN13 | 978-0-521-00924-9 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Physique Physique fondamentale Systèmes dynamiques