Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Fractals everywhere
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Fractals everywhere

Fractals everywhere

Michael F. Barnsley

532 pages, parution le 01/04/2000 (2eme édition)

Résumé

Table of Contents
  • Foreword XI Acknowledgments XIII

    Chapter I

  • Introduction 1

    Chapter II Metric Spaces; Equivalent Spaces; Classification of Subsets; and the Space of Fractals 5

  • 1. Spaces 5
  • 2. Metric Spaces 10
  • 3. Cauchy Sequences, Limit Points, Closed Sets, Perfect Sets, and Complete Metric Spaces 15
  • 4. Compact Sets, Bounded Sets, Open Sets, Interiors, and Boundaries 19
  • 5. Connected Sets, Disconnected Sets, and Pathwise-Connected Sets 24
  • 6. The Metric Space (H (X), h): The Place Where Fractals Live 27
  • 7. The Completeness of the Space of Fractals 33
  • 8. Additional Theorems about Metric Spaces 40

    Chapter III Transformations on Metric Spaces; Contraction Mappings; and the Construction of Fractals 42

  • 1. Transformations on the Real Line 42
  • 2. Affine Transformations in the Euclidean Plane 49
  • 3. Mobius Transformations on the Riemann Sphere 58
  • 4. Analytic Transformations 61
  • 5. How to Change Coordinates 68
  • 6. The Contraction Mapping Theorem 74
  • 7. Contraction Mappings on the Space of Fractals 79
  • 8. Two Algorithms for Computing Fractals from Iterated Function Systems 84
  • 9. Condensation Sets 91
  • 10. How to Make Fractal Models with the Help of the Collage Theorem 94
  • 11. Blowing in the Wind: The Continous Dependence of Fractals on Parameters 101

    Chapter IV Chaotic Dynamics on Fractals 115

  • 1. The Addresses of Points on Fractals 115
  • 2. Continuous Transformations from Code Space to Fractals 122
  • 3. Introduction to Dynamical Systems 130
  • 4. Dynamics on Fractals: Or How to Compute Orbits by Looking at Pictures 140
  • 5. Equivalent Dynamical Systems 145
  • 6. The Shadow of Deterministic Dynamics 149
  • 7. The Meaningfulness of Inaccurately Computed Orbits is Established by Means of a Shadowing Theorem 158
  • 8. Chaotic Dynamics on Fractals 164

    Chapter V Fractal Dimension 171

  • 1. Fractal Dimension 171
  • 2. The Theoretical Determination of the Fractal Dimension 180
  • 3. The Experimental Determination of the Fractal Dimension 188
  • 4. The Hausdorff-Besicovitch Dimension 195

    Chapter VI Fractal Interpolation 205

  • 1. Introduction: Applications for Fractal Functions 205
  • 2. Fractal Interpolation Functions 208
  • 3. The Fractal Dimension of Fractal Interpolation Functions 223
  • 4. Hidden Variable Fractal Interpolation 229
  • 5. Space-Filling Curves 238

    Chapter VII Julia Sets 246

  • 1. The Escape Time Algorithm for Computing Pictures of IFS Attractors and Julia Sets 246
  • 2. Iterated Function Systems Whose Attractors Are Julia Sets 266
  • 3. The Application of Julia Set Theory to Newton's Method 276
  • 4. A Rich Source for Fractals: Invariant Sets of Continuous Open Mappings 287

    Chapter VIII Parameter Spaces and Mandelbrot Sets 294

  • 1. The Idea of a Parameter Space: A Map of Fractals 294
  • 2. Mandelbrot Sets for Pairs of Transformations 299
  • 3. The Mandelbrot Set for Julia Sets 309 v4. How to Make Maps of Families of Fractals Using Escape Times 317

    Chapter IX Measures on Fractals 330

  • 1. Introduction to Invariant Measures on Fractals 330
  • 2. Fields and Sigma-Fields 337
  • 3. Measures 341
  • 4. Integration 344
  • 5. The Compact Metric Space (P (X), d) 349
  • 6. A Contraction Mapping on (P (X)) 350
  • 7. Elton's Theorem 364
  • 8. Application to Computer Graphics 370

    Chapter X Recurrent Iterated Function Systems 379

  • 1. Fractal Systems 379
  • 2. Recurrent Iterated Function Systems 383
  • 3. Collage Theorem for Recurrent Iterated Function Systems 392
  • 4. Fractal Systems with Vectors of Measures as Their Attractors 403
  • 5.

    References 409

  • References 412
  • Selected Answers 416
  • Index 523
  • Credits for Figures and Color Plates 533

Caractéristiques techniques

  PAPIER
Éditeur(s) Morgan Kaufmann
Auteur(s) Michael F. Barnsley
Parution 01/04/2000
Édition  2eme édition
Nb. de pages 532
Couverture Broché
Intérieur Noir et Blanc
EAN13 9780120790692
ISBN13 978-0-12-079069-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription