
Linear mixed models for longitudinal data
Geert Verbeke, Geert Molenberghs - Collection Springer Series In Statistics
Résumé
This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, condional linear mid models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. How3ever, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion. Geert Verbeke is Assistant Professor at the Biostistical Centre of the Katholieke Universiteit Leuven in Belgium. He received the B.S. degree in mathematics (1989) from the Katholieke Universiteit Leuven, the M.S. in biostatistics (1992) from the Limburgs Universitair Centrum, and earned a Ph.D. in biostatistics (1995) from the Katholieke Universiteit Leuven. Dr. Verbeke wrote his dissertation, as well as a number of methodological articles, on various aspects of linear mixed models for longitudinal data analysis. He has held visiting positions at the GerontologyResearch Center and the Johns Hopkins University. Geert Molenberghs is Assistant Professor of Biostatistics at the Limburgs Universitair Centrum in Belgium. He received the B.S. degree in mathematics (1988) and a Ph.D. in biostatistics (1993) from the Universiteit Antwerpen. Dr. Molenberghs published methodological work on the analysis of non-response in clinical and epidemiological studies. He serves as an associate editor for Biometrics, Applied Statistics, and Biostatistics, and is an officer of the Belgian Statistical Society. He has held visiting positions at the Harvard School of Public Health.
Sommaire
- A model for Longitudinal Data
- Exploratory Data Analysis
- Estimation of the Marginal Model
- Inference for the Marginal Model
- Inference for the Random Effects
- Fitting Linear Mixed Models with SAS
- General Guidelines for Model Building
- Exploring Serial Correlation
- Local Influence for the Linear Mixed Model
- The Heterogeneity Model
- Conditional Linear Mixed Models
- Exploring Incomplete Data
- Joint Modeling of Measurements and Missingness
- Simple Missing Data Methods
- Selection Models
- Pattern-Mixture Models
- Sensitivity Analysis for Selection Models
- Sensitivity Analysis for Models
- How Ignorable is Missing at Random?
- The Expectation-Maximization Algorithm
- Design Considerations
- Case Studies
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Geert Verbeke, Geert Molenberghs |
Collection | Springer Series In Statistics |
Parution | 20/04/2004 |
Nb. de pages | 570 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 929g |
Intérieur | Noir et Blanc |
EAN13 | 9780387950273 |
ISBN13 | 978-0-387-95027-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Biostatistiques
- Sciences Mathématiques Mathématiques appliquées Probabilités
- Sciences Mathématiques Mathématiques appliquées Statistiques
- Sciences Mathématiques Mathématiques appliquées Statistiques Analyse de données
- Sciences Sciences de la vie
- Sciences Etudes et concours Classes préparatoires et grandes écoles - Livres classes prépas scientifiques Mathématiques