Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Matrix Analysis for Statistics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Matrix Analysis for Statistics

Matrix Analysis for Statistics

James R. Schott - Collection Wiley Series in Probability and Statistics

456 pages, parution le 10/03/2005 (2eme édition)

Résumé

A complete, self-contained introduction to matrix analysis theory and practice

Matrix methods have evolved from a tool for expressing statistical problems to an indispensable part of the development, -understanding, and use of various types of complex statistical analyses. This evolution has made matrix methods a vital part of statistical education. Traditionally, matrix methods are taught in courses on everything from regression analysis to stochastic processes, thus creating a fractured view of the topic. This updated second edition of Matrix Analysis for Statistics offers readers a unique, unified view of matrix analysis theory and methods.

Matrix Analysis for Statistics, Second Edition provides in-depth, step-by-step coverage of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; the distribution of quadratic forms; and more. The subject matter is presented in a theorem/proof format, allowing for a smooth transition from one topic to another. Proofs are easy to follow, and the author carefully justifies every step. Accessible even for readers with a cursory background in statistics, yet rigorous enough for students in statistics, this new edition is the ideal introduction to matrix analysis theory and practice.

The book features:

  • Self-contained chapters, which allow readers to select individual topics or use the reference sequentially
  • Extensive examples and chapter-end practice exercises, many of which involve the use of matrix methods in statistical analyses
  • New material on elliptical distributions and new expanded coverage of such topics as eigenvalue inequalities and matrices partitioned in 2 by 2 form, in particular, results relating the rank, generalized inverse, eigenvalues of such matrices to their submatrices, and much more
  • Optional sections for mathematically advanced readers

L'auteur - James R. Schott

James R. Schott, Professor of Statistics at the University of Central Florida, received his PhD in statistics at the University of Florida. He has published extensively in the area of multivariate analysis with articles appearing in journals such as Biometrika, Journal of the American Statistical Association, and Journal of Multivariate Analysis.

Sommaire

  • Preface
  • A Review of Elementary Matrix Algebra
  • Vector Spaces
  • Eigenvalues and Eigenvectors
  • Matrix Factorizations and Martrix Norms
  • Generalized Inverses
  • Systems of Linear Equations
  • Partitioned Matrices
  • Special Matrices and Matrix Operations
  • Matrix Derivatives and Related Topics
  • Some Special Topics Related to Quadratic Forms
  • References
  • Index
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Wiley
Auteur(s) James R. Schott
Collection Wiley Series in Probability and Statistics
Parution 10/03/2005
Édition  2eme édition
Nb. de pages 456
Format 16 x 24
Couverture Relié
Poids 792g
Intérieur Noir et Blanc
EAN13 9780471669838
ISBN13 978-0-471-66983-8

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription