
Numerical Methods for Stochastic Control Problems in Continuous Time
Harold Kushner, Paul Dupuis - Collection Applications of mathematics
Résumé
This book presents a comprehensive development of effective numerical methods for stochastic control problems in continuous time. The process models are diffusions, jump-diffusions, or reflected diffusions of the type that occur in the majority of current applications. All the usual problem formulations are included, as well as those of more recent interest such as ergodic control, singular control and the types of reflected diffusions used as models of queuing networks.
Applications to complex deterministic problems are illustrated via application to a large class of problems from the calculus of variations. The general approach is known as the Markov Chain Approximation Method. The required background to stochastic processes is surveyed, there is an extensive development of methods of approximation, and a chapter is devoted to computational techniques.
The book is written on two levels, that of practice (algorithms and applications) and that of the mathematical development. Thus the methods and use should be broadly accessible. This update to the first edition will include added material on the control of the 'jump term' and the 'diffusion term.' There will be additional material on the deterministic problems, solving the Hamilton-Jacobi equations, for which the authors' methods are still among the most useful for many classes of problems. All of these topics are of great and growing current interest.
Sommaire
- Introduction
- Review of Continuous Time Models
- Controlled Markov Chains
- Dynamic Programming Equations
- Markov Chain Approximation Method
- The Approximating Markov Chains
- Computational Methods
- The Ergodic Cost Problem
- Heavy Traffic and Singular Control
- Weak Convergence and the Characterization of Processes
- Convergence Proofs
- Convergence Proofs Continued
- Finite Time and Filtering Problems
- Controlled Variance and Jumps
- Problems from the Calculus of Variations: Finite Time Horizon
- Problems from the Calculus of Variations: Infinite Time Horizon
- The Viscosity Solution Approach
- References
- Index
- List of Symbols
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Harold Kushner, Paul Dupuis |
Collection | Applications of mathematics |
Parution | 30/12/2000 |
Édition | 2eme édition |
Nb. de pages | 476 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 819g |
Intérieur | Noir et Blanc |
EAN13 | 9780387951393 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques par matières Recherche opérationnelle
- Sciences Mathématiques Mathématiques par matières Optimisation
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Statistiques Stochastique
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Physique Physique fondamentale Systèmes dynamiques