Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Partial Differential Equations in Several Complex Variables
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Partial Differential Equations in Several Complex Variables

Partial Differential Equations in Several Complex Variables

So-Chin Chen, Mei-Chi Shaw

380 pages, parution le 01/12/2000

Résumé

This book is intended as both an introductory text and a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress was made in the study of Cauchy-Riemann and tangential Cauchy-Riemann operators; this progress greatly influenced the development of PDEs and several complex variables. After the background material in complex analysis is developed in Chapters 1 through 3, the next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the $\bar\partial$-Neumann problem, including Hórmander's $L^2$ existence progress on the global regularity and irregularity of the $\bar\partial$-Neumann operators. The second part of the book gives a comprehensive study of the tangential Cauchy-Riemann equations, another important class of equations in several complex variables first studied by Lewy. An up-to-date account of the $L^2$ theory for $\bar\partial_b$ operator is given. Explicit integral solution representations are constructed both on the Heisenberg groups and on strictly convex boundaries with estimates in Hölder and $L^2$ spaces. Embeddability of abstract $CR$ structures is discussed in detail here for the first time.

This fairly self-contained book provides a much-needed introductory text to several complex variables and PDEs. It also provides a rich source of information to experts.

Titles in this series are copublished with International Press, Cambridge, MA.

Contents

  • Real and complex manifolds
  • The Cauchy integral formula and its applications
  • Holomorphic extension and pseudoconvexity
  • $L^2$ theory for $\overline\partial$ on pseudoconvex domains
  • The $\overline\partial$-Neumann problem on strongly pseudoconvex manifolds
  • Boundary regularity for $\overline\partial$ on pseudoconvex domains
  • Cauchy-Riemann manifolds and the tangential Cauchy-Riemann complex
  • Subelliptic estimates for second order differential equations and $\square_b$
  • The tangential Cauchy-Riemann complex on pseudoconvex $CR$ manifolds
  • Fundamental solutions for $\square_b$ on the Heisenberg group
  • Integral representations for $\overline\partial$ and $\overline\partial_b$
  • Embeddability of abstract $CR$ structures
  • Appendix
  • Bibliography
  • Table of notation
  • Index

Caractéristiques techniques

  PAPIER
Éditeur(s) American Mathematical Society (AMS)
Auteur(s) So-Chin Chen, Mei-Chi Shaw
Parution 01/12/2000
Nb. de pages 380
Format 18 x 26
Couverture Relié
Poids 899g
Intérieur Noir et Blanc
EAN13 9780821810620

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients 0 321 79 56 75 sav@commande.eyrolles.com
librairie française
Librairie française depuis 1925