
Physics of Fractal Operators
Bruce J. West, Mauro Bologna, Paolo Grigolini
Résumé
This text describes how fractal phenomena, both deterministic and random, change over time, using the fractional calculus. The intent is to identify those characteristics of complex physical phenomena that require fractional derivatives or fractional integrals to describe how the process changes over time. The discussion emphasizes the properties of physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory.
In many cases, classic analytic function theory cannot serve for modeling complex phenomena; "Fractal Operators" shows how classes of less familiar functions, such as fractals, can serve as useful models in such cases. Because fractal functions, such as the Weierstrass function (long known not to have a derivative), do in fact have fractional derivatives, they can be cast as solutions to fractional differential equations. The traditional techniques for solving differential equations, including Fourier and Laplace transforms as well as Green's functions, can be generalized to fractional derivatives.
Fractal Operators addresses a general strategy for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of various forms of transport in heterogeneous materials. This strategy builds on traditional approaches and explains why the historical techniques fail as phenomena become more and more complicated.
Contents
- Non-differentiable Processes
- Failure of Traditional Models
- Fractional Dynamics
- Fractional Fourier Transforms
- Fractional Laplace Transforms
- Fractional Randomness
- Fractional Rheology
- Fractional Stochastics
- The Ant in the Gurge Metaphor
- Appendices
L'auteur - Bruce J. West
Duke University, Triangle, NC, USA
L'auteur - Mauro Bologna
University of North Texas, Denton, TX, USA
L'auteur - Paolo Grigolini
University of North Texas, Denton, TX, USA
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Springer |
Auteur(s) | Bruce J. West, Mauro Bologna, Paolo Grigolini |
Parution | 18/02/2003 |
Nb. de pages | 364 |
Format | 16 x 24 |
Couverture | Relié |
Poids | 630g |
Intérieur | Noir et Blanc |
EAN13 | 9780387955544 |
ISBN13 | 978-0-387-95554-4 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour la physique
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Mathématiques Logiciels de calcul
- Sciences Physique
- Sciences Physique Physique fondamentale Fractales
- Sciences Physique Physique fondamentale Physique des particules
- Sciences Physique Physique fondamentale Théorie du chaos