
Résumé
The Scaled Boundary Finite Element Method describes a fundamental solution-less boundary element method, based on finite elements. As such, it combines the advantages of the boundary element method:
- spatial discretisation reduced by one
- boundary condition at infinity satisfied exactly
- with those of the finite element method:
- no fundamental solution required
- no singular integrals
- the processing of anisotropic material without any additional computational effort
Other benefits include the fact that the analytical solution inside the domain permits stress singularities to be determined directly, and also that there is no spatial discretisation of certain boundaries such as crack faces and free surfaces and interfaces between different materials.
The scaled boundary finite element method can be used to analyse any bounded and unbounded media governed by linear elliptic, parabolic and hyperbolic partial differential equations.
The book serves two goals which can be pursued independently. Part I is a primer, with a model problem addressing the simplest wave propagation but still containing all essential features. Part II derives the fundamental equations for statics, elastodynamics and diffusion, and discusses the solution procedures from scratch in great detail.
In summary this comprehensive text presents a novel procedure which will be of interest not only to engineers, researchers and students working in engineering mechanics, acoustics, heat-transfer, earthquake engineering, electromagnetism, and computational mathematics, but also consulting engineers dealing with nuclear structures, offshore platforms, hardened structures, critical facilities, dams, machine foundations and other structures subjected to earthquakes, wave loads, explosions and traffic.
Contents
- Fundamentals of numerical analysis
- Novel computational procedure
- Concepts of scaled boundary transformation of geometry and similarity
- Wedge and truncated semi-infinite wedge of shear plate
- Scaled-boundary-transformation-based derivation
- Mechanically-based derivation
- Modelisation with single line finite element
- Statics
- Mass of wedge
- High-frequency asymptotic expansion for dynamic stiffness of truncated semi-infinite wedge
- Numerical solution of dynamic stiffness, unit-impulse response and displacement of truncated semi-infinite wedge
- Analytical solution in frequency domain
- Implementation
- Conclusions
Appendix B: harmonic motion and fourier transformation
Appendix C: dynamic unbounded medium-structure interaction
Appendix D: historical note
II- Two- and three- dimensional elastodynamics, statics and diffusion
- Fundamental equations
- Statics
- Mass matrix of bounded medium
- High-frequency asymptotic expansion for dynamic stiffness of unbounded medium
- Numerical solution of dynamic stiffness, unit-impulse response and displacement of unbounded medium
- Analytical solution in frequency domain
- Extensions
- Substructuring
- Examples for bounded media
- Examples for unbounded media
- Error estimation and adaptivity
- Concluding remarks
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Wiley |
Auteur(s) | John P. Wolf |
Parution | 23/01/2003 |
Nb. de pages | 376 |
Format | 17 x 25 |
Couverture | Relié |
Poids | 777g |
Intérieur | Noir et Blanc |
EAN13 | 9780471486824 |
ISBN13 | 978-0-471-48682-4 |
Avantages Eyrolles.com
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Sciences Mathématiques Mathématiques par matières Analyse Analyse numérique
- Sciences Mathématiques Mathématiques appliquées Mathématiques pour les sciences de la vie Modélisation
- Sciences Mathématiques Mathématiques appliquées Méthodes numériques
- Sciences Mathématiques Mathématiques appliquées Traitement du signal
- Sciences Physique Physique fondamentale Systèmes dynamiques