
Résumé
A classic -- offering comprehensive and unified coverage with a balance between theory and practice!
Pattern recognition is integral to a wide spectrum of scientific disciplines and technologies including image analysis, speech recognition and audio classification, communications, computer-aided diagnosis, data mining. The authors, leading experts in the field of pattern recognition, have once again provided an up-to-date, self-contained volume encapsulating this wide spectrum of information.
Each chapter is designed to begin with basics of theory progressing to advanced topics and then discusses cutting-edge techniques. Problems and exercises are present at the end of each chapter with a solutions manual provided via a companion website where a number of demonstrations are also available to aid the reader in gaining practical experience with the theories and associated algorithms.
This edition includes discussion of Bayesian classification, Bayesian networks, linear and nonlinear classifier design (including neural networks and support vector machines), dynamic programming and hidden Markov models for sequential data, feature generation (including wavelets, principal component analysis, independent component analysis and fractals), feature selection techniques, basic concepts from learning theory, and clustering concepts and algorithms. This book considers classical and current theory and practice, of both supervised and unsupervised pattern recognition, to build a complete background for professionals and students of engineering.
Sommaire
- Introduction
- Classifiers Based on Bayes Decision Theory
- Linear Classifiers
- Nonlinear Classifiers
- Feature Selection
- Feature Generation I
- Feature Generation II
- Template Matching
- Context-Dependant Classification
- System Evaluation
- Clustering: Basic Concepts
- Clutering Algorithms I (Sequential)
- Clustering Algorithms II (Hierarchical
- Clustering Algorithms III (Functional Optimization)
- Clustering Algorithms IV (Graph Theory)
- Cluster Validity
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Academic Press |
Auteur(s) | Sergios Theodoridis, Konstantinos Koutroumbas |
Parution | 16/12/2005 |
Nb. de pages | 836 |
Format | 16 x 23,5 |
Couverture | Relié |
Poids | 1428g |
Intérieur | Noir et Blanc |
EAN13 | 9780123695314 |
ISBN13 | 978-0-12-369531-4 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse
- Informatique Développement d'applications Techniques de programmation Programmation fonctionnelle
- Informatique Développement d'applications Techniques de programmation Programmation parallèle et multithreading
- Informatique Développement d'applications Algorithmique et informatique appliquée
- Informatique Développement d'applications Technologies objet Programmation objet
- Sciences Mathématiques Mathématiques appliquées