Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Elements of computational statistics
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Elements of computational statistics

Elements of computational statistics

Statistics and computing

James E. Gentle

440 pages, parution le 16/10/2002

Résumé

Computationally intensive methods have become widely used both for statistical inference and for exploratory analyses of data. The methods of computational statistics involve resempling, partitioning, and multiple transformations of a dataset. They may also make use of randomly generated artificial data. Implementation of these methods often requires advanced techniques in numerical analysis, so there is a close connection between computational statistics and statistical computing. This book describes techniques used in computational statistics, and addresses some areas of application of computationally intensive methods, such as density estimation, identification of structure in data, and model building. Although methods of statistical computing are not emphasized in this book, numerical techniques for transformations, for function approximation, and for optimization are explained in the context of the statistical methods. The book includes exercises, some with solutions. The book can be used as a text or supplementary text for various courses in modern statistics at the advanced undergraduate or graduate level, and it can also be used as a reference for statisticians who use computationally intensive methods of analysis. Although some familiarity with probability and statistics is assumed, the book reviews basic methods of inference, and so is largely self-contained. ContentsI- Methods of Computational Statistics
  • Preliminaries
  • Monte Carlo Methods for Statistical Inference
  • Randomization and Data Partitioning
  • Bootstrap Methods
  • Tools for Identification of Structure in Data
  • Estimation of Functions
  • Graphical Methods in Computational Statistics
II- Exploring Data Density and Structure
  • Estimation of Probability Density Functions Using Parametric Models
  • Nonparametric Estimation of Probability Density Functions
  • Structure in Data
  • Statistical Models of Dependencies

L'auteur - James E. Gentle

James Gentle is University Professor of Computational Statistics at George Mason University. He is a fellow of the American Statistical Association (ASA)and a member of the International Statistical Institute. He has held several national offices in the American Statistical Association and has served as associate editor for journals of the ASA as well as for other journals in statistics and computing. He is the author of Random Number Generation and Monte Carlo Methods and Numerical Linear Algebra for Applications in Statistics.

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) James E. Gentle
Parution 16/10/2002
Nb. de pages 440
Format 16 x 24
Couverture Relié
Poids 730g
Intérieur Noir et Blanc
EAN13 9780387954899
ISBN13 978-0-387-95489-9

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription