Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
Inference in Hidden Markov Models
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

Inference in Hidden Markov Models

Inference in Hidden Markov Models

Olivier Cappé, Eric Moulines - Collection Springer Series In Statistics

672 pages, parution le 31/01/2005

Résumé

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states.

In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models.

This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.

Written for: Researchers and PhD students

Sommaire

  • Main Definitions and Notations
  • Filtering and Smoothing Recursions
  • Advanced Topics in Smoothing
  • Applications of Smoothing
  • Monte Carlo Methods
  • Sequential Monte Carlo Methods
  • Advanced Topics in Sequential Monte Carlo
  • Analysis of Sequential Monte Carlo Methods
  • Maximum Likelihood Inference
  • Part I: Optimization through Exact Smoothing
    • Maximum Likelihood Inference
  • Part II: Monte Carlo Optimization
    • Statistical Properties of the Maximum Likelihood Estimator
    • Fully Bayesian Approaches
    • Elements of Markov Chain Theory
    • An Information-Theoretic Perspective on Order Estimation.
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Springer
Auteur(s) Olivier Cappé, Eric Moulines
Collection Springer Series In Statistics
Parution 31/01/2005
Nb. de pages 672
Format 16 x 24
Couverture Relié
Poids 1075g
Intérieur Noir et Blanc
EAN13 9780387402642
ISBN13 978-0-387-40264-2

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription