Tous nos rayons

Déjà client ? Identifiez-vous

Mot de passe oublié ?

Nouveau client ?

CRÉER VOTRE COMPTE
An Introduction to Mathematical Reasoning
Ajouter à une liste

Librairie Eyrolles - Paris 5e
Indisponible

An Introduction to Mathematical Reasoning

An Introduction to Mathematical Reasoning

Numbers, sets and functions

Peter J. Eccles

362 pages, parution le 11/12/1997

Résumé

The purpose of this book is to introduce the basic ideas of mathematical proof to students embarking on university mathematics. The emphasis is on helping the reader in understanding and constructing proofs and writing clear mathematics. This is achieved by exploring set theory, combinatorics and number theory, topics which include many fundamental ideas which are part of the tool kit of any mathematician. This material illustrates how familiar ideas can be formulated rigorously, provides examples demonstrating a wide range of basic methods of proof, and includes some of the classic proofs. The book presents mathematics as a continually developing subject. Material meeting the needs of readers from a wide range of backgrounds is included. Over 250 problems include questions to interest and challenge the most able student as well as plenty of routine exercises to help familiarize the reader with the basic ideas.

  • Provides an introduction to the key notion of mathematical proof
  • Fully class tested by the author
  • Makes use of a large number of fully worked examples

Sommaire

  • Mathematical Statements and Proofs:
    • 1. The language of mathematics
    • 2. Implications
    • 3. Proofs
    • 4. Proof by contradiction
    • 5. The induction principle
  • Sets and Functions:
    • 6. The language of set theory
    • 7. Quantifiers
    • 8. Functions
    • 9. Injections, surjections and bijections
  • Numbers and Counting:
    • 10. Counting
    • 11. Properties of finite sets
    • 12. Counting functions and subsets
    • 13. Number systems
    • 14. Counting infinite sets
  • Arithmetic:
    • 15. The division theorem
    • 16. The Euclidean algorithm
    • 17. Consequences of the Euclidean algorithm
    • 18. Linear diophantine equations
  • Modular Arithmetic:
    • 19. Congruences of integers
    • 20. Linear congruences
    • 21. Congruence classes and the arithmetic of remainders
    • 22. Partitions and equivalence relations
  • Part VI. Prime Numbers:
    • 23. The sequence of prime numbers
    • 24. Congruence modulo a prime
    • Solutions to exercises
Voir tout
Replier

Caractéristiques techniques

  PAPIER
Éditeur(s) Cambridge University Press
Auteur(s) Peter J. Eccles
Parution 11/12/1997
Nb. de pages 362
Format 15,5 x 23
Couverture Broché
Poids 510g
Intérieur Noir et Blanc
EAN13 9780521597180
ISBN13 978-0-521-59718-0

Avantages Eyrolles.com

Livraison à partir de 0,01 en France métropolitaine
Paiement en ligne SÉCURISÉ
Livraison dans le monde
Retour sous 15 jours
+ d'un million et demi de livres disponibles
satisfait ou remboursé
Satisfait ou remboursé
Paiement sécurisé
modes de paiement
Paiement à l'expédition
partout dans le monde
Livraison partout dans le monde
Service clients sav.client@eyrolles.com
librairie française
Librairie française depuis 1925
Recevez nos newsletters
Vous serez régulièrement informé(e) de toutes nos actualités.
Inscription