
An Introduction to the Langlands Program
Daniel Bump, J.W. Cogdell, D. Gaitsgory, E. De Shalit, Emmanuel Kowalski, S.S. Kudla
Résumé
For the past several decades the theory of automorphic forms has become a major focal point of development in number theory and algebraic geometry, with applications in many diverse areas, including combinatorics and mathematical physics.
The twelve chapters of this monograph present a broad, user-friendly introduction to the Langlands program, that is, the theory of automorphic forms and its connection with the theory of L-functions and other fields of mathematics. Key features of this self-contained presentation:
- A variety of areas in number theory from the classical zeta function up to the Langlands program are covered.
- The exposition is systematic, with each chapter focusing on a particular topic devoted to special cases of the program:
- Basic zeta function of Riemann and its generalizations to Dirichlet and Hecke L-functions, class field theory and some topics on classical automorphic functions (E. Kowalski)
- A study of the conjectures of Artin and Shimura-Taniyama-Weil (E. de Shalit)
- An examination of classical modular (automorphic) L-functions as GL(2) functions, bringing into play the theory of representations (S.S. Kudla)
- Selberg's theory of the trace formula, which is a way to study automorphic representations (D. Bump)
- Discussion of cuspidal automorphic representations of GL(2,(A)) leads to Langlands theory for GL(n) and the importance of the Langlands dual group (J.W. Cogdell)
- An introduction to the geometric Langlands program, a new and active area of research that permits using powerful methods of algebraic geometry to construct automorphic sheaves (D. Gaitsgory)
Graduate students and researchers will benefit from this beautiful text.
Written for: Researchers, graduate students
L'auteur - Daniel Bump
Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997) and Algebraic Geometry (World Scientific 1998).
L'auteur - Emmanuel Kowalski
Emmanuel Kowalski est professeur à l'Université Bordeaux I. Ses travaux portent sur la théorie analytique des nombres, en particulier les aspects analytiques des fonctions L et des formes automorphes, et leurs interactions avec la géométrie arithmétique.
Sommaire
- E. Kowalski - Elementary Theory of L-Functions I
- E. Kowalski - Elementary Theory of L-Functions II
- E. Kowalski - Classical Automorphic Forms
- E. DeShalit - Artin L-Functions
- E. DeShalit - L-Functions of Elliptic Curves and Modular Forms
- S. Kudla - Tate's Thesis
- S. Kudla - From Modular Forms to Automorphic Representations
- D. Bump - Spectral Theory and the Trace Formula
- J. Cogdell - Analytic Theory of L-Functions for GLn
- J. Cogdell - Langlands Conjectures for GLn
- J. Cogdell - Dual Groups and Langlands Functoriality
- D. Gaitsgory - Informal Introduction to Geometric Langlands
Caractéristiques techniques
PAPIER | |
Éditeur(s) | Birkhäuser |
Auteur(s) | Daniel Bump, J.W. Cogdell, D. Gaitsgory, E. De Shalit, Emmanuel Kowalski, S.S. Kudla |
Parution | 15/01/2003 |
Nb. de pages | 282 |
Format | 15,5 x 23,5 |
Couverture | Broché |
Poids | 420g |
Intérieur | Noir et Blanc |
EAN13 | 9780817632113 |
ISBN13 | 978-0-8176-3211-3 |
Avantages Eyrolles.com
Nos clients ont également acheté
Consultez aussi
- Les meilleures ventes en Graphisme & Photo
- Les meilleures ventes en Informatique
- Les meilleures ventes en Construction
- Les meilleures ventes en Entreprise & Droit
- Les meilleures ventes en Sciences
- Les meilleures ventes en Littérature
- Les meilleures ventes en Arts & Loisirs
- Les meilleures ventes en Vie pratique
- Les meilleures ventes en Voyage et Tourisme
- Les meilleures ventes en BD et Jeunesse